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4.1 The maximum-subarray problem

Suppose that you been offered the opportunity to invest in the Volatile Chemical
Corporation. Like the chemicals the company produces, the stock price of the
Volatile Chemical Corporation is rather volatile. You are allowed to buy one unit
of stock only one time and then sell it at a later date, buying and selling after the
close of trading for the day. To compensate for this restriction, you are allowed to
learn what the price of the stock will be in the future. Your goal is to maximize
your profit. Figure 4.1 shows the price of the stock over a 17-day period. You
may buy the stock at any one time, starting after day 0, when the price is $100
per share. Of course, you would want to “buy low, sell high”—buy at the lowest
possible price and later on sell at the highest possible price—to maximize your
profit. Unfortunately, you might not be able to buy at the lowest price and then sell
at the highest price within a given period. In Figure 4.1, the lowest price occurs
after day 7, which occurs after the highest price, after day 1.

You might think that you can always maximize profit by either buying at the
lowest price or selling at the highest price. For example, in Figure 4.1, we would
maximize profit by buying at the lowest price, after day 7. If this strategy always
worked, then it would be easy determine how to maximize profit: find the highest
and lowest prices, and then work left from the highest price to find the lowest prior
price, work right from the lowest price to find the highest later price, and take
the pair with the greater difference. Figure 4.2 shows a simple counterexample,
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Figure 4.1 Information about the price of stock in the Volatile Chemical Corporation after the close
of trading over a period of 17 days. The horizontal axis of the chart indicates the day, and the vertical
axis shows the price. The bottom row of the table gives the change in price from the previous day.
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Figure 4.2 An example showing that the maximum profit does not always start at the lowest price
or end at the highest price. Again, the horizontal axis indicates the day, and the vertical axis shows
the price. Here, the maximum profit of $3 per share would be earned by buying after day 2 and
selling after day 3. The price of $7 after day 2 is not the lowest price overall, and the price of $10
after day 3 is not the highest price overall.

demonstrating that the maximum profit sometimes comes neither by buying at the
lowest price nor by selling at the highest price.

A brute-force solution

We can easily devise a brute-force solution to this problem: just try every possible
pair of buy and sell dates in which the buy date precedes the sell date. A period of n
days has

�
n

2

�
such pairs of dates. Since

�
n

2

�
is ‚.n2/, and the best we can hope for

is to evaluate each pair of dates in constant time, this approach would take �.n2/

time. Can we do better?

A transformation

In order to design an algorithm with an o.n2/ running time, we will look at the
input in a slightly different way. We want to find a sequence of days over which
the net change from the first day to the last is maximum. Instead of looking at the
daily prices, let us instead consider the daily change in price, where the change on
day i is the difference between the prices after day i � 1 and after day i . The table
in Figure 4.1 shows these daily changes in the bottom row. If we treat this row as
an array A, shown in Figure 4.3, we now want to find the nonempty, contiguous
subarray of A whose values have the largest sum. We call this contiguous subarray
the maximum subarray. For example, in the array of Figure 4.3, the maximum
subarray of AŒ1 : : 16� is AŒ8 : : 11�, with the sum 43. Thus, you would want to buy
the stock just before day 8 (that is, after day 7) and sell it after day 11, earning a
profit of $43 per share.

At first glance, this transformation does not help. We still need to check�
n�1
2

� D ‚.n2/ subarrays for a period of n days. Exercise 4.1-2 asks you to show
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Figure 4.3 The change in stock prices as a maximum-subarray problem. Here, the subar-
ray AŒ8 : : 11�, with sum 43, has the greatest sum of any contiguous subarray of array A.

that although computing the cost of one subarray might take time proportional to
the length of the subarray, when computing all ‚.n2/ subarray sums, we can orga-
nize the computation so that each subarray sum takes O.1/ time, given the values
of previously computed subarray sums, so that the brute-force solution takes ‚.n2/

time.
So let us seek a more efficient solution to the maximum-subarray problem.

When doing so, we will usually speak of “a” maximum subarray rather than “the”
maximum subarray, since there could be more than one subarray that achieves the
maximum sum.

The maximum-subarray problem is interesting only when the array contains
some negative numbers. If all the array entries were nonnegative, then the
maximum-subarray problem would present no challenge, since the entire array
would give the greatest sum.

A solution using divide-and-conquer

Let’s think about how we might solve the maximum-subarray problem using
the divide-and-conquer technique. Suppose we want to find a maximum subar-
ray of the subarray AŒlow : : high�. Divide-and-conquer suggests that we divide
the subarray into two subarrays of as equal size as possible. That is, we find
the midpoint, say mid, of the subarray, and consider the subarrays AŒlow : :mid�
and AŒmidC 1 : : high�. As Figure 4.4(a) shows, any contiguous subarray AŒi : : j �

of AŒlow : : high� must lie in exactly one of the following places:

� entirely in the subarray AŒlow : :mid�, so that low � i � j � mid,
� entirely in the subarray AŒmidC 1 : : high�, so that mid < i � j � high, or
� crossing the midpoint, so that low � i � mid < j � high.

Therefore, a maximum subarray of AŒlow : : high� must lie in exactly one of these
places. In fact, a maximum subarray of AŒlow : : high� must have the greatest
sum over all subarrays entirely in AŒlow : :mid�, entirely in AŒmid C 1 : : high�,
or crossing the midpoint. We can find maximum subarrays of AŒlow : :mid� and
AŒmidC1 : : high� recursively, because these two subproblems are smaller instances
of the problem of finding a maximum subarray. Thus, all that is left to do is find a
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Figure 4.4 (a) Possible locations of subarrays of AŒlow : : high�: entirely in AŒlow : :mid�, entirely
in AŒmid C 1 : : high�, or crossing the midpoint mid. (b) Any subarray of AŒlow : : high� crossing
the midpoint comprises two subarrays AŒi : :mid� and AŒmid C 1 : : j �, where low � i � mid and
mid < j � high.

maximum subarray that crosses the midpoint, and take a subarray with the largest
sum of the three.

We can easily find a maximum subarray crossing the midpoint in time linear
in the size of the subarray AŒlow : : high�. This problem is not a smaller instance
of our original problem, because it has the added restriction that the subarray it
chooses must cross the midpoint. As Figure 4.4(b) shows, any subarray crossing
the midpoint is itself made of two subarrays AŒi : :mid� and AŒmidC 1 : : j �, where
low � i � mid and mid < j � high. Therefore, we just need to find maximum
subarrays of the form AŒi : :mid� and AŒmidC 1 : : j � and then combine them. The
procedure FIND-MAX-CROSSING-SUBARRAY takes as input the array A and the
indices low, mid, and high, and it returns a tuple containing the indices demarcating
a maximum subarray that crosses the midpoint, along with the sum of the values in
a maximum subarray.

FIND-MAX-CROSSING-SUBARRAY.A; low;mid; high/

1 left-sum D �1
2 sum D 0

3 for i D mid downto low
4 sum D sumC AŒi�

5 if sum > left-sum
6 left-sum D sum
7 max-left D i

8 right-sum D �1
9 sum D 0

10 for j D midC 1 to high
11 sum D sumC AŒj �

12 if sum > right-sum
13 right-sum D sum
14 max-right D j

15 return .max-left;max-right; left-sum C right-sum/
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This procedure works as follows. Lines 1–7 find a maximum subarray of the
left half, AŒlow : :mid�. Since this subarray must contain AŒmid�, the for loop of
lines 3–7 starts the index i at mid and works down to low, so that every subarray
it considers is of the form AŒi : :mid�. Lines 1–2 initialize the variables left-sum,
which holds the greatest sum found so far, and sum, holding the sum of the entries
in AŒi : :mid�. Whenever we find, in line 5, a subarray AŒi : :mid� with a sum of
values greater than left-sum, we update left-sum to this subarray’s sum in line 6, and
in line 7 we update the variable max-left to record this index i . Lines 8–14 work
analogously for the right half, AŒmidC1 : : high�. Here, the for loop of lines 10–14
starts the index j at midC1 and works up to high, so that every subarray it considers
is of the form AŒmid C 1 : : j �. Finally, line 15 returns the indices max-left and
max-right that demarcate a maximum subarray crossing the midpoint, along with
the sum left-sumCright-sum of the values in the subarray AŒmax-left : :max-right�.

If the subarray AŒlow : : high� contains n entries (so that n D high � lowC 1),
we claim that the call FIND-MAX-CROSSING-SUBARRAY.A; low;mid; high/
takes ‚.n/ time. Since each iteration of each of the two for loops takes ‚.1/

time, we just need to count up how many iterations there are altogether. The for
loop of lines 3–7 makes mid�lowC1 iterations, and for loop of lines 10–14 makes
high � mid iterations, and so the total number of iterations is

.mid � lowC 1/C .high � mid/ D high � lowC 1

D n :

With a linear-time FIND-MAX-CROSSING-SUBARRAY procedure in hand, we
can write pseudocode for a divide-and-conquer algorithm to solve the maximum-
subarray problem:

FIND-MAXIMUM-SUBARRAY.A; low; high/

1 if high == low
2 return .low; high; AŒlow�/ // base case: only one element
3 else mid D b.lowC high/=2c
4 .left-low; left-high; left-sum/ D

FIND-MAXIMUM-SUBARRAY.A; low;mid/
5 .right-low; right-high; right-sum/ D

FIND-MAXIMUM-SUBARRAY.A;midC 1; high/
6 .cross-low; cross-high; cross-sum/ D

FIND-MAX-CROSSING-SUBARRAY.A; low;mid; high/
7 if left-sum � right-sum and left-sum � cross-sum
8 return .left-low; left-high; left-sum/

9 elseif right-sum � left-sum and right-sum � cross-sum
10 return .right-low; right-high; right-sum/

11 else return .cross-low; cross-high; cross-sum/


