
Global
edition

Stallings
N

etw
ork Security Essentials

Applications and Standards

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization, and
adaptation from the North American version.

G
LOB

a

l
ed

it
io

n

Global
edition

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada, you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

Network Security
Essentials
Applications and Standards
sixth edition

William Stallings
six

t
h

ed

it
io

n

Stallings_06_1292154853_Final.indd 1 07/09/16 7:47 PM

Network Security
Essentials:
Applications and Standards

Sixth Edition

Global Edition

William Stallings

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Dubai • Singapore • Hong Kong
Tokyo • Seoul • Taipei • New Delhi • Cape Town • Sao Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan

A01_STAL4855_06_GE_FM.indd 1 9/8/16 9:01 PM

Vice President and Editorial Director, ECS:
Marcia J. Horton

Executive Editor: Tracy Johnson (Dunkelberger)
Editorial Assistant: Kristy Alaura
Program Manager: Carole Snyder
Project Manager: Robert Engelhardt
Media Team Lead: Steve Wright
Acquisitions Editor, Global Edition: Sourabh

Maheshwari
Assistant Project Editor, Global Edition: Shaoni

Mukherjee
Manager, Media Production, Global Edition: Vikram

Kumar

Senior Manufacturing Controller, Production, Global
Edition: Trudy Kimber

R&P Manager: Rachel Youdelman
R&P Senior Project Manager: William Opaluch
Senior Operations Specialist: Maura Zaldivar-Garcia
Inventory Manager: Meredith Maresca
Marketing Manager: Demetrius Hall
Product Marketing Manager: Bram Van Kempen
Marketing Assistant: Jon Bryant
Cover Designer: Marta Samsel
Cover Art: Africa Studio
Full-Service Project Management: Chandrasekar

Subramanian, SPi Global

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appears on page 448.

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

ISBN 10: 1-292-15485-3
ISBN 13: 978-1-292-15485-5

Typeset by SPi Global
Printed and bound in Malaysia.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

© Pearson Education Limited 2017

The right of William Stallings to be identified as the author of this work has been asserted by him in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Network Security Essentials: Applications and
Standards, 6th Edition, ISBN 978-0-134-52733-8, by William Stallings published by Pearson Education © 2017.

10 9 8 7 6 5 4 3 2 1

A01_STAL4855_06_GE_FM.indd 2 9/8/16 9:01 PM

http://www.pearsonglobaleditions.com

For Tricia never
dull never boring

the smartest
and bravest

person I know

A01_STAL4855_06_GE_FM.indd 3 9/8/16 9:01 PM

This page intentionally left blank

A01_STAL4855_06_GE_FM.indd 4 12/19/16 8:49 PM

Contents

Preface 10

About the Author 16

Chapter 1	 Introduction 17

	 1.1	 Computer Security Concepts 20
	 1.2	 The OSI Security Architecture 24
	 1.3	 Security Attacks 25
	 1.4	 Security Services 27
	 1.5	 Security Mechanisms 31
	 1.6	 Fundamental Security Design Principles 32
	 1.7	 Attack Surfaces and Attack Trees 36
	 1.8	 A Model for Network Security 39
	 1.9	 Standards 42
	 1.10	 Key Terms, Review Questions, and Problems 42

Part One: Cryptography 45

Chapter 2	 Symmetric Encryption and Message Confidentiality 45

	 2.1	 Symmetric Encryption Principles 46
	 2.2	 Symmetric Block Encryption Algorithms 52
	 2.3	 Random and Pseudorandom Numbers 59
	 2.4	 Stream Ciphers and RC4 63
	 2.5	 Cipher Block Modes of Operation 68
	 2.6	 Key Terms, Review Questions, and Problems 73

Chapter 3	 Public-Key Cryptography and Message Authentication 78

	 3.1	 Approaches to Message Authentication 79
	 3.2	 Secure Hash Functions 84
	 3.3	 Message Authentication Codes 91
	 3.4	 Public-Key Cryptography Principles 96
	 3.5	 Public-Key Cryptography Algorithms 100
	 3.6	 Digital Signatures 109
	 3.7	 Key Terms, Review Questions, and Problems 112

Part Two: Network Security Applications 119

Chapter 4	 Key Distribution and User Authentication 119

	 4.1	 Remote User Authentication Principles 120
	 4.2	 Symmetric Key Distribution Using Symmetric Encryption 123
	 4.3	 Kerberos 124
	 4.4	 Key Distribution Using Asymmetric Encryption 137
	 4.5	 X.509 Certificates 139
	 4.6	 Public-Key Infrastructure 146

5

A01_STAL4855_06_GE_FM.indd 5 9/8/16 9:01 PM

6   Contents

	 4.7	 Federated Identity Management 149
	 4.8	 Key Terms, Review Questions, and Problems 155

Chapter 5	 Network Access Control and Cloud Security 160

	 5.1	 Network Access Control 161
	 5.2	 Extensible Authentication Protocol 164
	 5.3	 IEEE 802.1X Port-Based Network Access Control 168
	 5.4	 Cloud Computing 170
	 5.5	 Cloud Security Risks and Countermeasures 176
	 5.6	 Data Protection in the Cloud 178
	 5.7	 Cloud Security as a Service 182
	 5.8	 Addressing Cloud Computing Security Concerns 185
	 5.9	 Key Terms, Review Questions, and Problems 186

Chapter 6	 Transport-Level Security 187

	 6.1	 Web Security Considerations 188
	 6.2	 Transport Layer Security 190
	 6.3	 HTTPS 207
	 6.4	 Secure Shell (SSH) 208
	 6.5	 Key Terms, Review Questions, and Problems 220

Chapter 7	 Wireless Network Security 222

	 7.1	 Wireless Security 223
	 7.2	 Mobile Device Security 226
	 7.3	 IEEE 802.11 Wireless LAN Overview 230
	 7.4	 IEEE 802.11i Wireless LAN Security 236
	 7.5	 Key Terms, Review Questions, and Problems 251

Chapter 8	 Electronic Mail Security 253

	 8.1	 Internet Mail Architecture 254
	 8.2	 E-mail Formats 258
	 8.3	 E-mail Threats and Comprehensive E-mail Security 266
	 8.4	 S/MIME 268
	 8.5	 Pretty Good Privacy 279
	 8.6	 DNSSEC 280
	 8.7	 DNS-Based Authentication of Named Entities 285
	 8.8	 Sender Policy Framework 286
	 8.9	 DomainKeys Identified Mail 289
	 8.10	 Domain-Based Message Authentication, Reporting, and Conformance 295
	 8.11	 Key Terms, Review Questions, and Problems 300

Chapter 9	 IP Security 302

	 9.1	 IP Security Overview 303
	 9.2	 IP Security Policy 309
	 9.3	 Encapsulating Security Payload 314
	 9.4	 Combining Security Associations 322
	 9.5	 Internet Key Exchange 325
	 9.6	 Cryptographic Suites 333
	 9.7	 Key Terms, Review Questions, and Problems 335

A01_STAL4855_06_GE_FM.indd 6 9/8/16 9:01 PM

Contents  7

Part Three: System Security 337

Chapter 10	Malicious Software 337

	 10.1	 Types of Malicious Software (Malware) 338
	 10.2	 Advanced Persistent Threat 341
	 10.3	 Propagation—Infected Content—Viruses 342
	 10.4	 Propagation—Vulnerability Exploit—Worms 347
	 10.5	 Propagation—Social Engineering—Spam E-mail, Trojans 353
	 10.6	 Payload—System Corruption 355
	 10.7	 Payload—Attack Agent—Zombie, Bots 356
	 10.8	 Payload—Information Theft—Keyloggers, Phishing, Spyware 357
	 10.9	 Payload—Stealthing—Backdoors, Rootkits 359
	 10.10	 Countermeasures 360
	 10.11	 Distributed Denial of Service Attacks 367
	 10.12	 Key Terms, Review Questions, and Problems 372

Chapter 11	 Intruders 375

	 11.1	 Intruders 376
	 11.2	 Intrusion Detection 381
	 11.3	 Password Management 396
	 11.4	 Key Terms, Review Questions, and Problems 406

Chapter 12 	Firewalls 410

	 12.1	 The Need for Firewalls 411
	 12.2	 Firewall Characteristics and Access Policy 412
	 12.3	 Types of Firewalls 414
	 12.4	 Firewall Basing 420
	 12.5	 Firewall Location and Configurations 423
	 12.6	 Key Terms, Review Questions, and Problems 428

Appendices 432

Appendix A	 Some Aspects of Number Theory 432

	 A.1	 Prime and Relatively Prime Numbers 433
	 A.2	 Modular Arithmetic 435

Appendix B	 Projects for Teaching Network Security 437

	 B.1	 Research Projects 438
	 B.2	 Hacking Project 439
	 B.3	 Programming Projects 439
	 B.4	 Laboratory Exercises 440
	 B.5	 Practical Security Assessments 440
	 B.6	 Firewall Projects 440
	 B.7	 Case Studies 441
	 B.8	 Writing Assignments 441
	 B.9	 Reading/Report Assignments 441

References 442

Credits 448

Index 450

A01_STAL4855_06_GE_FM.indd 7 9/8/16 9:01 PM

8   Contents

Online Chapters and Appendices1

Chapter 13	Network Management Security

	 13.1	 Basic Concepts of SNMP
	 13.2	 SNMPv1 Community Facility
	 13.3	 SNMPv3
	 13.4	 Recommended Reading
	 13.5	 Key Terms, Review Questions, and Problems

Part FIVE: Legal And Ethical Issues

Chapter 14	 Legal and Ethical Issues

	 14.1	 Cybercrime and Computer Crime
	 14.2	 Intellectual Property
	 14.3	 Privacy
	 14.4	 Ethical Issues
	 14.5	 Recommended Reading
	 14.6	 References
	 14.7	 Key Terms, Review Questions, and Problems
	 14.A	 Information Privacy

Chapter 15	 SHA-3

	 15.1	 The Origins of SHA-3
	 15.2	 Evaluation Criteria for SHA-3
	 15.3	 The Sponge Construction
	 15.4	 The SHA-3 Iteration Function f
	 15.5	 Recommended Reading and Referencess
	 15.6	 Key Terms, Review Questions, and Problems

Appendix C	Standards and Standards-Setting Organizations

	 C.1	 The Importance of Standards
	 C.2	 Internet Standards and the Internet Society
	 C.3	 The National Institute of Standards and Technology
	 C.4	 The International Telecommunication Union
	 C.5	 The International Organization for Standardization
	 C.6	 Significant Security Standards and Documents

Appendix D	TCP/IP and OSI

	 D.1	 Protocols and Protocol Architectures
	 D.2	 The TCP/IP Protocol Architecture
	 D.3	 The Role of an Internet Protocol
	 D.4	 IPv4
	 D.5	 IPv6
	 D.6	 The OSI Protocol Architecture

1Online chapters, appendices, and other documents are at the Companion Website, available via the
access code on the inside front cover of this book.

A01_STAL4855_06_GE_FM.indd 8 9/8/16 9:01 PM

Appendix E	 Pseudorandom Number Generation

	 E.1	 Prng Requirements
	 E.2	 Pseudorandom Number Generation Using a Block Cipher
	 E.3	 Pseudorandom Number Generation Using Hash Functions and MACs

Appendix F	 Kerberos Encryption Techniques

	 F.1	 Password-To-Key Transformation
	 F.2	 Propagating Cipher Block Chaining Mode

Appendix G	Data Compression Using ZIP

	 G.1	 Compression Algorithm
	 G.2	 Decompression Algorithm

Appendix H	PGP

	 H.1	 Notation
	 H.2	 Operational Description
	 H.3	 Cryptographic Keys and Key Rings
	 H.4	 Public-Key Management
	 H.5	 Pgp Random Number Generation

Appendix I	 The International Reference Alphabet

Appendix J	 The Base-Rate Fallacy

	 J.1	 Conditional Probability and Independence
	 J.2	 Bayes’ Theorem
	 J.3	 The Base-Rate Fallacy Demonstrated
	 J.4	 References

Appendix K	Radix-64 Conversion

Contents  9

A01_STAL4855_06_GE_FM.indd 9 9/8/16 9:01 PM

Preface

In this age of universal electronic connectivity, of viruses and hackers, of electronic eaves-
dropping and electronic fraud, there is indeed no time at which security does not matter. Two
trends have come together to make the topic of this book of vital interest. First, the explosive
growth in computer systems and their interconnections via networks has increased the de-
pendence of both organizations and individuals on the information stored and communicat-
ed using these systems. This, in turn, has led to a heightened awareness of the need to protect
data and resources from disclosure, to guarantee the authenticity of data and messages, and
to protect systems from network-based attacks. Second, the disciplines of cryptography and
network security have matured, leading to the development of practical, readily available
applications to enforce network security.

What’s New In The SIXTH Edition

In the four years since the fifth edition of this book was published, the field has seen contin-
ued innovations and improvements. In this new edition, I try to capture these changes while
maintaining a broad and comprehensive coverage of the entire field. To begin this process of
revision, the fifth edition of this book was extensively reviewed by a number of professors
who teach the subject and by professionals working in the field. The result is that, in many
places, the narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been
substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

■■ Fundamental security design principles: Chapter 1 includes a new section discussing the
security design principles listed as fundamental by the National Centers of Academic
Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by the
U.S. National Security Agency and the U.S. Department of Homeland Security.

■■ Attack surfaces and attack trees: Chapter 1 includes a new section describing these two
concepts, which are useful in evaluating and classifying security threats.

■■ Practical use of RSA: Chapter 3 expands the discussion of RSA encryption and RSA
digital signatures to show how padding and other techniques are used to provide prac-
tical security using RSA.

■■ User authentication model: Chapter 4 includes a new description of a general model
for user authentication, which helps to unify the discussion of the various approaches
to user authentication.

■■ Cloud security: The material on cloud security in Chapter 5 has been updated and
expanded to reflect its importance and recent developments.

■■ Transport Layer Security (TLS): The treatment of TLS in Chapter 6 has been updated,
reorganized to improve clarity, and now includes a discussion of the new TLS version 1.3.

10

A01_STAL4855_06_GE_FM.indd 10 9/8/16 9:01 PM

Preface  11

■■ E-mail Security: Chapter 8 has been completely rewritten to provide a comprehensive
and up-to-date discussion of e-mail security. It includes:

—— New: discussion of e-mail threats and a comprehensive approach to e-mail security.

—— New: discussion of STARTTLS, which provides confidentiality and authentication
for SMTP.

—— Revised: treatment of S/MIME has been substantially expanded and updated to
reflect the latest version 3.2.

—— New: discussion of DNSSEC and its role in supporting e-mail security.

—— New: discussion of DNS-based Authentication of Named Entities (DANE) and the
use of this approach to enhance security for certificate use in SMTP and S/MIME.

—— New: discussion of Sender Policy Framework (SPF), which is the standardized way
for a sending domain to identify and assert the mail senders for a given domain.

—— Revised: discussion of DomainKeys Identified Mail (DKIM) has been revised.

—— New: discussion of Domain-based Message Authentication, Reporting, and Confor-
mance (DMARC), allows e-mail senders to specify policy on how their mail should
be handled, the types of reports that receivers can send back, and the frequency
those reports should be sent.

Objectives

It is the purpose of this book to provide a practical survey of network security applications
and standards. The emphasis is on applications that are widely used on the Internet and for
corporate networks, and on standards (especially Internet standards) that have been widely
deployed.

Support Of ACM/IEEE Computer Science Curricula 2013

The book is intended for both academic and professional audiences. As a textbook, it is
intended as a one-semester undergraduate course in cryptography and network security for
computer science, computer engineering, and electrical engineering majors. The changes
to this edition are intended to provide support of the current draft version of the ACM/
IEEE Computer Science Curricula 2013 (CS2013). CS2013 adds Information Assurance
and Security (IAS) to the curriculum recommendation as one of the Knowledge Areas in
the Computer Science Body of Knowledge. The document states that IAS is now part of the
curriculum recommendation because of the critical role of IAS in computer science educa-
tion. CS2013 divides all course work into three categories: Core-Tier 1 (all topics should be
included in the curriculum), Core-Tier-2 (all or almost all topics should be included), and
elective (desirable to provide breadth and depth). In the IAS area, CS2013 recommends
topics in Fundamental Concepts and Network Security in Tier 1 and Tier 2, and Cryptog-
raphy topics as elective. This text covers virtually all of the topics listed by CS2013 in these
three categories.

The book also serves as a basic reference volume and is suitable for self-study.

A01_STAL4855_06_GE_FM.indd 11 9/8/16 9:01 PM

12   Preface

Plan Of The Text

The book is organized in three parts:

■■ Part One. Cryptography: A concise survey of the cryptographic algorithms and pro-
tocols underlying network security applications, including encryption, hash functions,
message authentication, and digital signatures.

■■ Part Two. Network Security Applications: Covers important network security tools
and applications, including key distribution, Kerberos, X.509v3 certificates, Extensible
Authentication Protocol, S/MIME, IP Security, SSL/TLS, IEEE 802.11i WiFi security,
and cloud security.

■■ Part Three. System Security: Looks at system-level security issues, including the threat
of and countermeasures for malicious software and intruders, and the use of firewalls.

The book includes a number of pedagogic features, including the use of numerous fig-
ures and tables to clarify the discussions. Each chapter includes a list of key words, review
questions, homework problems, and suggestions for further reading. The book also includes
an extensive glossary, a list of frequently used acronyms, and a list of references. In addition,
a test bank is available to instructors.

Instructor Support Materials

The major goal of this text is to make it as effective a teaching tool for this exciting and fast-
moving subject as possible. This goal is reflected both in the structure of the book and in the
supporting material. The following supplementary materials that will aid the instructor ac-
company the text:

■■ Solutions manual: Solutions to all end-of-chapter Review Questions and Problems.

■■ Projects manual: Suggested project assignments for all of the project categories listed
below.

■■ PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

■■ PDF files: Reproductions of all figures and tables from the book.

■■ Test bank: A chapter-by-chapter set of questions with a separate file of answers.

■■ Sample syllabi: The text contains more material than can be conveniently covered in
one semester. Accordingly, instructors are provided with several sample syllabi that
guide the use of the text within limited time. These samples are based on real-world
experience by professors who used the fourth edition.

All of these support materials are available at the Instructor Resource Center
(IRC) for this textbook, which can be reached through the Publisher’s Website
www.pearsonglobaleditions.com/stallings. To gain access to the IRC, please contact your
local Pearson sales representative.

A01_STAL4855_06_GE_FM.indd 12 9/8/16 9:01 PM

http://www.pearsonglobaleditions.com/stallings

Projects And Other Student Exercises

For many instructors, an important component of a network security course is a project or
set of projects by which the student gets hands-on experience to reinforce concepts from the
text. This book provides an unparalleled degree of support, including a projects component
in the course. The IRC includes not only guidance on how to assign and structure the projects,
but also a set of project assignments that covers a broad range of topics from the text:

■■ Hacking project: This exercise is designed to illuminate the key issues in intrusion
detection and prevention.

■■ Lab exercises: A series of projects that involve programming and experimenting with
concepts from the book.

■■ Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

■■ Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

■■ Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

■■ Firewall projects: A portable network firewall visualization simulator is provided, to-
gether with exercises for teaching the fundamentals of firewalls.

■■ Case studies: A set of real-world case studies, including learning objectives, case de-
scription, and a series of case discussion questions.

■■ Writing assignments: A set of suggested writing assignments, organized by chapter.

■■ Reading/report assignments: A list of papers in the literature—one for each chapter—
that can be assigned for the student to read and then write a short report.

This diverse set of projects and other student exercises enables the instructor to use the
book as one component in a rich and varied learning experience and to tailor a course plan to
meet the specific needs of the instructor and students. See Appendix B in this book for details.

Online CONTENT For Students

For this new edition, a tremendous amount of original supporting material for students has
been made available online.

Preface  13

A01_STAL4855_06_GE_FM.indd 13 9/8/16 9:01 PM

Purchasing this textbook new also grants the reader one year of access to the
Companion Website, which includes the following materials:

■■ Online chapters: To limit the size and cost of the book, three chapters of the book are
provided in PDF format. This includes a chapter on SHA-3, a chapter on SNMP security,
and one on legal and ethical issues. The chapters are listed in this book’s table of contents.

■■ Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A number of online
appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

■■ Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions are available. These enable the
students to test their understanding of the text.

■■ Key papers: A number of papers from the professional literature, many hard to find,
are provided for further reading.

■■ Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

To access the Companion Website, click on the Premium Content link at the Com-
panion Website or at pearsonglobaleditions.com/stallings and enter the student access code
found on the card in the front of the book.

Relationship To Cryptography And Network Security

This book is adapted from Cryptography and Network Security, Seventh Edition, Global
Edition (CNS7eGE). CNS7eGE provides a substantial treatment of cryptography, key man-
agement, and user authentication, including detailed analysis of algorithms and a significant
mathematical component, all of which covers nearly 500 pages. Network Security Essentials:
Applications and Standards, Sixth Edition, Global Edition (NSE6eGE), provides instead
a concise overview of these topics in Chapters 2 through 4. NSE6eGE includes all of the
remaining material of CNS7eGE. NSE6eGE also covers SNMP security, which is not cov-
ered in CNS7eGE. Thus, NSE6eGE is intended for college courses and professional readers
whose interest is primarily in the application of network security and who do not need or
desire to delve deeply into cryptographic theory and principles.

Acknowledgments

This new edition has benefited from review by a number of people who gave generously of
their time and expertise. The following professors reviewed the manuscript: Jim Helm (Ari-
zona State University, Ira A. Fulton College of Engineering, Information Technology), Ali
Saman Tosun (University of Texas at San Antonio, Computer Science Department), Haibo
Wang (DIBTS, Texas A&M International University), Xunhua Wang (James Madison Uni-
versity, Department of Computer Science), Robert Kayl (University of Maryland University
College), Scott Anderson (Southern Adventist University, School of Computing), and Jona-
than Katz (University of Maryland, Department of Computer Science).

14   Preface

A01_STAL4855_06_GE_FM.indd 14 9/8/16 9:01 PM

http://pearsonglobaleditions.com/stallings

Thanks also to the people who provided detailed technical reviews of one or more
chapters: Kashif Aftab, Alan Cantrell, Rajiv Dasmohapatra, Edip Demirbilek, Dan Dieterle,
Gerardo Iglesias Galvan, Michel Garcia, David Gueguen, Anasuya Threse Innocent, Dennis
Kavanagh, Duncan Keir, Robert Knox, Bo Lin, Kousik Nandy, Nickolay Olshevsky, Massi-
miliano Sembiante, Oscar So, and Varun Tewari.

Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and
solutions. Professor Sreekanth Malladi of Dakota State University developed the hacking
exercises. Sanjay Rao and Ruben Torres of Purdue developed the laboratory exercises that
appear in the IRC.

The following people contributed project assignments that appear in the instructor’s
supplement: Henning Schulzrinne (Columbia University), Cetin Kaya Koc (Oregon State
University), and David Balenson (Trusted Information Systems and George Washington
University). Kim McLaughlin developed the test bank.

Finally, I thank the many people responsible for the publication of this text, all of whom
did their usual excellent job. This includes the staff at Pearson, particularly my editor Tracy
Johnson, program manager Carole Snyder, and production manager Bob Engelhardt. Thanks
also to the marketing and sales staffs at Pearson, without whose efforts this text would not
be in front of you.

ACKNOWLEDGEMENTS FOR THE GLOBAL EDITION

The publishers would like to thank the following for contributing to and reviewing the
Global Edition: A. Kannammal (Coimbatore Institute of Technology), Somitra Sanadhya
(IIIT Delhi), Atul Kahate (Symbiosis University and Pune University), Anwitaman Datta
(NTU Singapore), and Khyat Sharma.

Preface  15

A01_STAL4855_06_GE_FM.indd 15 9/8/16 9:01 PM

About the Author

Dr. William Stallings has authored 18 titles, and counting revised editions, over 40 books
on computer security, computer networking, and computer architecture. His writings have
appeared in numerous publications, including the Proceedings of the IEEE, ACM Computing
Reviews, and Cryptologia.

He has 13 times received the award for the best Computer Science textbook of the year
from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager,
and an executive with several high-technology firms. He has designed and implemented both
TCP/IP-based and OSI-based protocol suites on a variety of computers and operating sys-
tems, ranging from microcomputers to mainframes. As a consultant, he has advised govern-
ment agencies, computer and software vendors, and major users on the design, selection, and
use of networking software and products.

He created and maintains the Computer Science Student Resource Site at Computer-
ScienceStudent.com. This site provides documents and links on a variety of subjects of gener-
al interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a Ph.D. from MIT in Computer Science and a B.S. from Notre Dame
in electrical engineering.

16

A01_STAL4855_06_GE_FM.indd 16 9/8/16 9:01 PM

http://ComputerScienceStudent.com
http://ComputerScienceStudent.com

17

Introduction
1.1	 Computer Security Concepts

A Definition of Computer Security
Examples
The Challenges of Computer Security

1.2	 The OSI Security Architecture

1.3	 Security Attacks

Passive Attacks
Active Attacks

1.4	 Security Services

Authentication
Access Control
Data Confidentiality
Data Integrity
Nonrepudiation
Availability Service

1.5	 Security Mechanisms

1.6	 Fundamental Security Design Principles

1.7	 Attack Surfaces and Attack Trees

Attack Surfaces
Attack Trees

1.8	 A Model for Network Security

1.9	 Standards

1.10	 Key Terms, Review Questions, and Problems

Chapter

M01_STAL4855_06_GE_C01.indd 17 8/11/16 8:31 AM

18   chapter 1 / Introduction

The requirements of information security within an organization have undergone two
major changes in the last several decades. Before the widespread use of data process-
ing equipment, the security of information felt to be valuable to an organization was
provided primarily by physical and administrative means. An example of the former
is the use of rugged filing cabinets with a combination lock for storing sensitive docu-
ments. An example of the latter is personnel screening procedures used during the
hiring process.

With the introduction of the computer, the need for automated tools for pro-
tecting files and other information stored on the computer became evident. This
is especially the case for a shared system, such as a time-sharing system, and the
need is even more acute for systems that can be accessed over a public telephone
network, data network, or the Internet. The generic name for the collection of tools
designed to protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of distrib-
uted systems and the use of networks and communications facilities for carrying
data between terminal user and computer and between computer and computer.
Network security measures are needed to protect data during their transmission. In
fact, the term network security is somewhat misleading, because virtually all busi-
ness, government, and academic organizations interconnect their data processing
equipment with a collection of interconnected networks. Such a collection is often
referred to as an internet,1 and the term internet security is used.

1We use the term internet with a lowercase “i” to refer to any interconnected collection of network.
A corporate intranet is an example of an internet. The Internet with a capital “I” may be one of the facili-
ties used by an organization to construct its internet.

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Describe the key security requirements of confidentiality, integrity, and
availability.

◆◆ Describe the X.800 security architecture for OSI.

◆◆ Discuss the types of security threats and attacks that must be dealt with
and give examples of the types of threats and attacks that apply to different
categories of computer and network assets.

◆◆ Explain the fundamental security design principles.

◆◆ Discuss the use of attack surfaces and attack trees.

◆◆ List and briefly describe key organizations involved in cryptography
standards.

M01_STAL4855_06_GE_C01.indd 18 8/11/16 8:31 AM

chapter 1 / Introduction  19

There are no clear boundaries between these two forms of security. For ex-
ample, a computer virus may be introduced into a system physically when it arrives
on a flash drive or an optical disk and is subsequently loaded onto a computer.
Viruses may also arrive over an internet. In either case, once the virus is resident
on a computer system, internal computer security tools are needed to detect and
recover from the virus.

This book focuses on internet security, which consists of measures to deter,
prevent, detect, and correct security violations that involve the transmission of
information. That is a broad statement that covers a host of possibilities. To give
you a feel for the areas covered in this book, consider the following examples of
security violations:

1.	 User A transmits a file to user B. The file contains sensitive information (e.g.,
payroll records) that is to be protected from disclosure. User C, who is not
authorized to read the file, is able to monitor the transmission and capture a
copy of the file during its transmission.

2.	 A network manager, D, transmits a message to a computer, E, under its man-
agement. The message instructs computer E to update an authorization file
to include the identities of a number of new users who are to be given access
to that computer. User F intercepts the message, alters its contents to add or
delete entries, and then forwards the message to E, which accepts the message
as coming from manager D and updates its authorization file accordingly.

3.	 Rather than intercept a message, user F constructs its own message with
the desired entries and transmits that message to E as if it had come from
manager D. Computer E accepts the message as coming from manager D and
updates its authorization file accordingly.

4.	 An employee is fired without warning. The personnel manager sends a mes-
sage to a server system to invalidate the employee’s account. When the invali-
dation is accomplished, the server is to post a notice to the employee’s file as
confirmation of the action. The employee is able to intercept the message and
delay it long enough to make a final access to the server to retrieve sensitive
information. The message is then forwarded, the action taken, and the confir-
mation posted. The employee’s action may go unnoticed for some consider-
able time.

5.	 A message is sent from a customer to a stockbroker with instructions for vari-
ous transactions. Subsequently, the investments lose value and the customer
denies sending the message.

Although this list by no means exhausts the possible types of security violations, it
illustrates the range of concerns of network security.

This chapter provides a general overview of the subject matter that struc-
tures the material in the remainder of the book. We begin with a general discussion
of network security services and mechanisms and of the types of attacks they are
designed for. Then we develop a general overall model within which the security
services and mechanisms can be viewed.

M01_STAL4855_06_GE_C01.indd 19 8/11/16 8:31 AM

20   chapter 1 / Introduction

	 1.1	Co mputer Security Concepts

A Definition of Computer Security

The NIST Computer Security Handbook [NIST95] defines the term computer
security as

Computer Security: The protection afforded to an automated information sys-
tem in order to attain the applicable objectives of preserving the integrity, avail-
ability, and confidentiality of information system resources (includes hardware,
software, firmware, information/data, and telecommunications).

This definition introduces three key objectives that are at the heart of
computer security.

■■ Confidentiality: This term covers two related concepts:

Data2 confidentiality:  Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

Privacy:  Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed.

■■ Integrity: This term covers two related concepts:

Data integrity:  Assures that data (both stored and in transmitted packets)
and programs are changed only in a specified and authorized manner.

System integrity:  Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

■■ Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad. The
three concepts embody the fundamental security objectives for both data and for
information and computing services. For example, the NIST Standards for Security
Categorization of Federal Information and Information Systems (FIPS 199) lists
confidentiality, integrity, and availability as the three security objectives for infor-
mation and for information systems. FIPS 199 provides a useful characterization of
these three objectives in terms of requirements and the definition of a loss of secu-
rity in each category.

■■ Confidentiality: Preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprietary in-
formation. A loss of confidentiality is the unauthorized disclosure of information.

2RFC 4949 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction, nor does this book.

M01_STAL4855_06_GE_C01.indd 20 8/11/16 8:31 AM

1.1 / Computer Security Concepts  21

■■ Integrity: Guarding against improper information modification or destruction,
including ensuring information nonrepudiation and authenticity. A loss of in-
tegrity is the unauthorized modification or destruction of information.

■■ Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present
a complete picture (Figure 1.1). Two of the most commonly mentioned are

■■ Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

■■ Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems are not yet an achiev-
able goal, we must be able to trace a security breach to a responsible party.
Systems must keep records of their activities to permit later forensic analysis
to trace security breaches or to aid in transaction disputes.

Examples

We now provide some examples of applications that illustrate the requirements just
enumerated.3 For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integ-
rity, or availability). These levels are defined in FIPS 199:

■■ Low: The loss could be expected to have a limited adverse effect on organiza-
tional operations, organizational assets, or individuals. A limited adverse effect
means that, for example, the loss of confidentiality, integrity, or availability might

3These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

Figure 1.1 � Essential Network and Computer
Security Requirements

Data
and

services

Availability

Integrity

A
ccountability

A
ut

he
nt

ic
ity

Con�dentiality

M01_STAL4855_06_GE_C01.indd 21 8/11/16 8:32 AM

22   chapter 1 / Introduction

(i) cause a degradation in mission capability to an extent and duration that the
organization is able to perform its primary functions, but the effectiveness of the
functions is noticeably reduced; (ii) result in minor damage to organizational
assets; (iii) result in minor financial loss; or (iv) result in minor harm to individuals.

■■ Moderate: The loss could be expected to have a serious adverse effect on orga-
nizational operations, organizational assets, or individuals. A serious adverse
effect means that, for example, the loss might (i) cause a significant degrada-
tion in mission capability to an extent and duration that the organization is
able to perform its primary functions, but the effectiveness of the functions is
significantly reduced; (ii) result in significant damage to organizational assets;
(iii) result in significant financial loss; or (iv) result in significant harm to indi-
viduals that does not involve loss of life or serious, life-threatening injuries.

■■ High: The loss could be expected to have a severe or catastrophic adverse effect
on organizational operations, organizational assets, or individuals. A severe or
catastrophic adverse effect means that, for example, the loss might (i) cause
a severe degradation in or loss of mission capability to an extent and dura-
tion that the organization is not able to perform one or more of its primary
functions; (ii) result in major damage to organizational assets; (iii) result in
major financial loss; or (iv) result in severe or catastrophic harm to individuals
involving loss of life or serious, life-threatening injuries.

Confidentiality  Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents,
and employees that require the information to do their job. Student enrollment
information may have a moderate confidentiality rating. While still covered by
FERPA, this information is seen by more people on a daily basis, is less likely to be
targeted than grade information, and results in less damage if disclosed. Directory
information (such as lists of students, faculty, or departmental lists) may be assigned
a low confidentiality rating or indeed no rating. This information is typically freely
available to the public and published on a school’s Web site.

Integrity  Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to
trust that the information is correct and current. Now suppose that an employee
(e.g., a nurse) who is authorized to view and update this information deliberately
falsifies the data to cause harm to the hospital. The database needs to be restored
to a trusted basis quickly, and it should be possible to trace the error back to the
person responsible. Patient allergy information is an example of an asset with a high
requirement for integrity. Inaccurate information could result in serious harm or
death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a Web site that offers a forum to registered users to discuss some
specific topic. Either a registered user or a hacker could falsify some entries or
deface the Web site. If the forum exists only for the enjoyment of the users, brings
in little or no advertising revenue, and is not used for something important such

M01_STAL4855_06_GE_C01.indd 22 8/11/16 8:32 AM

1.1 / Computer Security Concepts  23

as research, then potential damage is not severe. The Web master may experience
some data, financial, and time loss.

An example of a low-integrity requirement is an anonymous online poll. Many
Web sites, such as news organizations, offer these polls to their users with very few
safeguards. However, the inaccuracy and unscientific nature of such polls are well
understood.

Availability  The more critical a component or service, the higher is the level of
availability required. Consider a system that provides authentication services for
critical systems, applications, and devices. An interruption of service results in the
inability for customers to access computing resources and for the staff to access the
resources they need to perform critical tasks. The loss of the service translates into
a large financial loss due to lost employee productivity and potential customer loss.

An example of an asset that typically would be rated as having a moderate
availability requirement is a public Web site for a university; the Web site provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low-
availability requirement. Although the temporary loss of the application may be
an annoyance, there are other ways to access the information, such as a hardcopy
directory or the operator.

The Challenges of Computer Security

Computer and network security is both fascinating and complex. Some of the reasons
include:

1.	 Security is not as simple as it might first appear to the novice. The require-
ments seem to be straightforward; indeed, most of the major requirements for
security services can be given self-explanatory, one-word labels: confidential-
ity, authentication, nonrepudiation, and integrity. But the mechanisms used to
meet those requirements can be quite complex, and understanding them may
involve rather subtle reasoning.

2.	 In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

3.	 Because of point 2, the procedures used to provide particular services are
often counterintuitive. Typically, a security mechanism is complex, and it is not
obvious from the statement of a particular requirement that such elaborate
measures are needed. It is only when the various aspects of the threat are con-
sidered that elaborate security mechanisms make sense.

4.	 Having designed various security mechanisms, it is necessary to decide where
to use them. This is true both in terms of physical placement (e.g., at what points
in a network are certain security mechanisms needed) and in a logical sense
[e.g., at what layer or layers of an architecture such as TCP/IP (Transmission
Control Protocol/Internet Protocol) should mechanisms be placed].

M01_STAL4855_06_GE_C01.indd 23 8/11/16 8:32 AM

24   chapter 1 / Introduction

5.	 Security mechanisms typically involve more than a particular algorithm or pro-
tocol. They also require that participants be in possession of some secret infor-
mation (e.g., an encryption key), which raises questions about the creation,
distribution, and protection of that secret information. There also may be a reli-
ance on communications protocols whose behavior may complicate the task of
developing the security mechanism. For example, if the proper functioning of
the security mechanism requires setting time limits on the transit time of a
message from sender to receiver, then any protocol or network that introduces
variable, unpredictable delays may render such time limits meaningless.

6.	 Computer and network security is essentially a battle of wits between a per-
petrator who tries to find holes and the designer or administrator who tries to
close them. The great advantage that the attacker has is that he or she need
only find a single weakness, while the designer must find and eliminate all
weaknesses to achieve perfect security.

7.	 There is a natural tendency on the part of users and system managers to
perceive little benefit from security investment until a security failure occurs.

8.	 Security requires regular, even constant, monitoring, and this is difficult in
today’s short-term, overloaded environment.

9.	 Security is still too often an afterthought to be incorporated into a system after
the design is complete rather than being an integral part of the design process.

10.	 Many users (and even security administrators) view strong security as an
impediment to efficient and user-friendly operation of an information system
or use of information.

The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

	 1.2	T he Osi Security Architecture

To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for com-
puter and network security needs some systematic way of defining the requirements
for security and characterizing the approaches to satisfying those requirements.
This is difficult enough in a centralized data processing environment; with the use of
local and wide area networks, the problems are compounded.

ITU-T4 Recommendation X.800, Security Architecture for OSI, defines such a
systematic approach.5 The OSI security architecture is useful to managers as a way
of organizing the task of providing security. Furthermore, because this architecture

4The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations-sponsored agency that develops standards, called Recommendations, relating to
telecommunications and to open systems interconnection (OSI).
5The OSI security architecture was developed in the context of the OSI protocol architecture, which is
described in Appendix D. However, for our purposes in this chapter, an understanding of the OSI proto-
col architecture is not required.

M01_STAL4855_06_GE_C01.indd 24 8/11/16 8:32 AM

1.3 / Security Attacks  25

was developed as an international standard, computer and communications vendors
have developed security features for their products and services that relate to this
structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract, over-
view of many of the concepts that this book deals with. The OSI security architecture
focuses on security attacks, mechanisms, and services. These can be defined briefly as

■■ Security attack: Any action that compromises the security of information
owned by an organization.

■■ Security mechanism: A process (or a device incorporating such a process) that
is designed to detect, prevent, or recover from a security attack.

■■ Security service: A processing or communication service that enhances the
security of the data processing systems and the information transfers of an
organization. The services are intended to counter security attacks, and they
make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more
or less the same thing. Table 1.1 provides definitions taken from RFC 4949, Internet
Security Glossary.

	 1.3	S ecurity Attacks

A useful means of classifying security attacks, used both in X.800 and RFC 4949, is
in terms of passive attacks and active attacks. A passive attack attempts to learn or
make use of information from the system but does not affect system resources. An
active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks (Figure 1.2a) are in the nature of eavesdropping on, or monitoring
of, transmissions. The goal of the opponent is to obtain information that is being
transmitted. Two types of passive attacks are the release of message contents and
traffic analysis.

The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

Threat
A potential for violation of security, which exists when there is a circumstance, capability, action,
or event that could breach security and cause harm. That is, a threat is a possible danger that might
exploit a vulnerability.

Attack
An assault on system security that derives from an intelligent threat. That is, an intelligent act that
is a deliberate attempt (especially in the sense of a method or technique) to evade security services
and violate the security policy of a system.

Table 1.1  Threats and Attacks (RFC 4949)

M01_STAL4855_06_GE_C01.indd 25 8/11/16 8:32 AM

26   chapter 1 / Introduction

A second type of passive attack, traffic analysis, is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. If we
had encryption protection in place, an opponent still might be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an

Figure 1.2  Security Attacks

(a) Passive attacks

Alice

(b) Active attacks

Bob

Darth

Bob

Darth

Alice

Internet or
other comms facility

Internet or
other comms facility

1 2
3

M01_STAL4855_06_GE_C01.indd 26 8/11/16 8:32 AM

1.4 / Security Services  27

apparently normal fashion, and neither the sender nor the receiver is aware that
a third party has read the messages or observed the traffic pattern. However, it is
feasible to prevent the success of these attacks, usually by means of encryption.
Thus, the emphasis in dealing with passive attacks is on prevention rather than
detection.

Active Attacks

Active attacks (Figure 1.2b) involve some modification of the data stream or the
creation of a false stream and can be subdivided into four categories: masquerade,
replay, modification of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity
(path 2 of Figure 1.2b is active). A masquerade attack usually includes one of the
other forms of active attack. For example, authentication sequences can be captured
and replayed after a valid authentication sequence has taken place, thus enabling an
authorized entity with few privileges to obtain extra privileges by impersonating an
entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect (paths 1, 2, and 3 active).

Modification of messages simply means that some portion of a legitimate mes-
sage is altered, or that messages are delayed or reordered, to produce an unauthor-
ized effect (paths 1 and 2 active). For example, a message meaning “Allow John
Smith to read confidential file accounts” is modified to mean “Allow Fred Brown
to read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of
communications facilities (path 3 active). This attack may have a specific target; for
example, an entity may suppress all messages directed to a particular destination
(e.g., the security audit service). Another form of service denial is the disruption of
an entire network—either by disabling the network or by overloading it with mes-
sages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their success.
On the other hand, it is quite difficult to prevent active attacks absolutely because
of the wide variety of potential physical, software, and network vulnerabilities.
Instead, the goal is to detect active attacks and to recover from any disruption or
delays caused by them. If the detection has a deterrent effect, it also may contribute
to prevention.

	 1.4	S ecurity Services

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems or
of data transfers. Perhaps a clearer definition is found in RFC 4949, which provides
the following definition: A processing or communication service that is provided by

M01_STAL4855_06_GE_C01.indd 27 8/11/16 8:32 AM

28   chapter 1 / Introduction

a system to give a specific kind of protection to system resources; security services
implement security policies and are implemented by security mechanisms.

X.800 divides these services into five categories and fourteen specific services
(Table 1.2). We look at each category in turn.6

6There is no universal agreement about many of the terms used in the security literature. For example, the
term integrity is sometimes used to refer to all aspects of information security. The term authentication is
sometimes used to refer both to verification of identity and to the various functions listed under integrity
in this chapter. Our usage here agrees with both X.800 and RFC 4949.

Authentication

The assurance that the communicating entity is the
one that it claims to be.

Peer Entity Authentication
Used in association with a logical connection to
provide confidence in the identity of the entities
connected.

Data-Origin Authentication
In a connectionless transfer, provides assurance that
the source of received data is as claimed.

Access Control

The prevention of unauthorized use of a resource
(i.e., this service controls who can have access to a
resource, under what conditions access can occur,
and what those accessing the resource are allowed
to do).

Data Confidentiality

The protection of data from unauthorized
disclosure.

Connection Confidentiality
The protection of all user data on a connection.

Connectionless Confidentiality
The protection of all user data in a single data block.

Selective-Field Confidentiality
The confidentiality of selected fields within the user
data on a connection or in a single data block.

Traffic-Flow Confidentiality
The protection of the information that might be
derived from observation of traffic flows.

Data Integrity

The assurance that data received are exactly
as sent by an authorized entity (i.e., contain no
modification, insertion, deletion, or replay).

Connection Integrity with Recovery
Provides for the integrity of all user data on a
connection and detects any modification, insertion,
deletion, or replay of any data within an entire data
sequence, with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without
recovery.

Selective-Field Connection Integrity
Provides for the integrity of selected fields within the
user data of a data block transferred over a connec-
tion and takes the form of determination of whether
the selected fields have been modified, inserted,
deleted, or replayed.

Connectionless Integrity
Provides for the integrity of a single connectionless
data block and may take the form of detection of
data modification. Additionally, a limited form of
replay detection may be provided.

Selective-Field Connectionless Integrity
Provides for the integrity of selected fields within a
single connectionless data block; takes the form of
determination of whether the selected fields have
been modified.

Nonrepudiation

Provides protection against denial by one of the
entities involved in a communication of having
participated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified
party.

Nonrepudiation, Destination
Proof that the message was received by the specified
party.

Table 1.2  Security Services (X.800)

M01_STAL4855_06_GE_C01.indd 28 8/11/16 8:32 AM

1.4 / Security Services  29

Authentication

The authentication service is concerned with assuring that a communication is
authentic. In the case of a single message, such as a warning or alarm signal, the
function of the authentication service is to assure the recipient that the message
is from the source that it claims to be from. In the case of an ongoing interaction,
such as the connection of a terminal to a host, two aspects are involved. First, at the
time of connection initiation, the service assures that the two entities are authentic
(i.e., that each is the entity that it claims to be). Second, the service must assure that
the connection is not interfered with in such a way that a third party can masquer-
ade as one of the two legitimate parties for the purposes of unauthorized transmis-
sion or reception.

Two specific authentication services are defined in X.800:

■■ Peer entity authentication: Provides for the corroboration of the identity of a
peer entity in an association. Two entities are considered peers if they imple-
ment the same protocol in different systems (e.g., two TCP modules in two
communicating systems). Peer entity authentication is provided for use at the
establishment of or during the data transfer phase of a connection. It attempts
to provide confidence that an entity is not performing either a masquerade or
an unauthorized replay of a previous connection.

■■ Data origin authentication: Provides for the corroboration of the source of a
data unit. It does not provide protection against the duplication or modifica-
tion of data units. This type of service supports applications like electronic
mail, where there are no prior interactions between the communicating
entities.

Access Control

In the context of network security, access control is the ability to limit and control
the access to host systems and applications via communications links. To achieve
this, each entity trying to gain access must first be identified, or authenticated, so
that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With re-
spect to the content of a data transmission, several levels of protection can be iden-
tified. The broadest service protects all user data transmitted between two users
over a period of time. For example, when a TCP connection is set up between two
systems, this broad protection prevents the release of any user data transmitted over
the TCP connection. Narrower forms of this service can also be defined, including
the protection of a single message or even specific fields within a message. These
refinements are less useful than the broad approach and may even be more complex
and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from
analysis. This requires that an attacker not be able to observe the source and desti-
nation, frequency, length, or other characteristics of the traffic on a communications
facility.

M01_STAL4855_06_GE_C01.indd 29 8/11/16 8:32 AM

30   chapter 1 / Introduction

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single mes-
sage, or selected fields within a message. Again, the most useful and straightforward
approach is total stream protection.

A connection-oriented integrity service deals with a stream of messages
and assures that messages are received as sent with no duplication, insertion,
modification, reordering, or replays. The destruction of data is also covered
under this service. Thus, the connection-oriented integrity service addresses
both message stream modification and denial of service. On the other hand, a
connectionless integrity service deals with individual messages without regard to
any larger context and generally provides protection against message modifica-
tion only.

We can make a distinction between service with and without recovery. Because
the integrity service relates to active attacks, we are concerned with detection rather
than prevention. If a violation of integrity is detected, then the service may simply
report this violation, and some other portion of software or human intervention is
required to recover from the violation. Alternatively, there are mechanisms avail-
able to recover from the loss of integrity of data, as we will review subsequently.
The incorporation of automated recovery mechanisms is typically the more attrac-
tive alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-
sage. Thus, when a message is sent, the receiver can prove that the alleged sender in
fact sent the message. Similarly, when a message is received, the sender can prove
that the alleged receiver in fact received the message.

Availability Service

Both X.800 and RFC 4949 define availability to be the property of a system or a
system resource being accessible and usable upon demand by an authorized sys-
tem entity, according to performance specifications for the system (i.e., a system
is available if it provides services according to the system design whenever users
request them). A variety of attacks can result in the loss of or reduction in avail-
ability. Some of these attacks are amenable to automated countermeasures, such
as authentication and encryption, whereas others require some sort of physical
action to prevent or recover from loss of availability of elements of a distributed
system.

X.800 treats availability as a property to be associated with various security
services. However, it makes sense to call out specifically an availability service. An
availability service is one that protects a system to ensure its availability. This ser-
vice addresses the security concerns raised by denial-of-service attacks. It depends
on proper management and control of system resources and thus depends on access
control service and other security services.

M01_STAL4855_06_GE_C01.indd 30 8/11/16 8:32 AM

1.5 / Security Mechanisms  31

Specific Security Mechanisms

May be incorporated into the appropriate protocol
layer in order to provide some of the OSI security
services.

Encipherment
The use of mathematical algorithms to transform
data into a form that is not readily intelligible. The
transformation and subsequent recovery of the data
depend on an algorithm and zero or more encryption
keys.

Digital Signature
Data appended to, or a cryptographic transformation
of, a data unit that allows a recipient of the data unit
to prove the source and integrity of the data unit and
protect against forgery (e.g., by the recipient).

Access Control
A variety of mechanisms that enforce access rights to
resources.

Data Integrity
A variety of mechanisms used to assure the integrity
of a data unit or stream of data units.

Authentication Exchange
A mechanism intended to ensure the identity of an
entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to
frustrate traffic analysis attempts.

Routing Control
Enables selection of particular physically secure
routes for certain data and allows routing changes,
especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain
properties of a data exchange.

Pervasive Security Mechanisms

Mechanisms that are not specific to any particular
OSI security service or protocol layer.

Trusted Functionality
That which is perceived to be correct with respect
to some criteria (e.g., as established by a security
policy).

Security Label
The marking bound to a resource (which may be
a data unit) that names or designates the security
attributes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail
Data collected and potentially used to facilitate a
security audit, which is an independent review and
examination of system records and activities.

Security Recovery
Deals with requests from mechanisms, such as event
handling and management functions, and takes
recovery actions.

Table 1.3  Security Mechanisms (X.800)

	 1.5	S ecurity Mechanisms

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are di-
vided into those that are implemented in a specific protocol layer, such as TCP
or an application-layer protocol, and those that are not specific to any particular
protocol layer or security service. These mechanisms will be covered in the appro-
priate places in the book, so we do not elaborate now except to comment on the

M01_STAL4855_06_GE_C01.indd 31 8/11/16 8:32 AM

32   chapter 1 / Introduction

definition of encipherment. X.800 distinguishes between reversible encipherment
mechanisms and irreversible encipherment mechanisms. A reversible encipherment
mechanism is simply an encryption algorithm that allows data to be encrypted and
subsequently decrypted. Irreversible encipherment mechanisms include hash algo-
rithms and message authentication codes, which are used in digital signature and
message authentication applications.

Table 1.4, based on one in X.800, indicates the relationship between security
services and security mechanisms.

	 1.6	 Fundamental Security Design Principles

Despite years of research and development, it has not been possible to develop
security design and implementation techniques that systematically exclude security
flaws and prevent all unauthorized actions. In the absence of such foolproof tech-
niques, it is useful to have a set of widely agreed design principles that can guide
the development of protection mechanisms. The National Centers of Academic
Excellence in Information Assurance/Cyber Defense, which is jointly sponsored by
the U.S. National Security Agency and the U.S. Department of Homeland Security,
list the following as fundamental security design principles [NCAE13]:

■■ Economy of mechanism

■■ Fail-safe defaults

■■ Complete mediation

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Peer entity authentication

Service

Mechanism

Encip
herm

en
t

Digi
tal

 sig
natu

re

Acce
ss

co
ntro

l

Data
 in

teg
rit

y

Authen
tic

ati
on ex

ch
an

ge

Tra�
c p

ad
ding

Routin
g c

ontro
l

Notar
iza

tio
n

Data origin authentication

Access control

Con�dentiality

Tra�c �ow con�dentiality

Data integrity

Nonrepudiation

Availability

Table 1.4  Relationship between Security Services and Mechanisms

M01_STAL4855_06_GE_C01.indd 32 8/11/16 8:32 AM

1.6 / Fundamental Security Design Principles  33

■■ Open design

■■ Separation of privilege

■■ Least privilege

■■ Least common mechanism

■■ Psychological acceptability

■■ Isolation

■■ Encapsulation

■■ Modularity

■■ Layering

■■ Least astonishment

The first eight listed principles were initially proposed in [SALT75] and have
withstood the test of time. In this section, we briefly discuss each principle.

Economy of mechanism means that the design of security measures embod-
ied in both hardware and software should be as simple and small as possible. The
motivation for this principle is that relatively simple, small design is easier to test
and verify thoroughly. With a complex design, there are many more opportuni-
ties for an adversary to discover subtle weaknesses to exploit that may be difficult
to spot ahead of time. The more complex the mechanism, the more likely it is to
possess exploitable flaws. Simple mechanisms tend to have fewer exploitable flaws
and require less maintenance. Further, because configuration management issues
are simplified, updating or replacing a simple mechanism becomes a less intensive
process. In practice, this is perhaps the most difficult principle to honor. There is a
constant demand for new features in both hardware and software, complicating the
security design task. The best that can be done is to keep this principle in mind dur-
ing system design to try to eliminate unnecessary complexity.

Fail-safe default means that access decisions should be based on permission
rather than exclusion. That is, the default situation is lack of access, and the protec-
tion scheme identifies conditions under which access is permitted. This approach
exhibits a better failure mode than the alternative approach, where the default is
to permit access. A design or implementation mistake in a mechanism that gives
explicit permission tends to fail by refusing permission, a safe situation that can
be quickly detected. On the other hand, a design or implementation mistake in a
mechanism that explicitly excludes access tends to fail by allowing access, a failure
that may long go unnoticed in normal use. For example, most file access systems
work on this principle and virtually all protected services on client/server systems
work this way.

Complete mediation means that every access must be checked against the
access control mechanism. Systems should not rely on access decisions retrieved
from a cache. In a system designed to operate continuously, this principle requires
that, if access decisions are remembered for future use, careful consideration should
be given to how changes in authority are propagated into such local memories. File
access systems appear to provide an example of a system that complies with this
principle. However, typically, once a user has opened a file, no check is made to see
if permissions change. To fully implement complete mediation, every time a user

M01_STAL4855_06_GE_C01.indd 33 8/11/16 8:32 AM

34   chapter 1 / Introduction

reads a field or record in a file, or a data item in a database, the system must exercise
access control. This resource-intensive approach is rarely used.

Open design means that the design of a security mechanism should be open
rather than secret. For example, although encryption keys must be secret, encryp-
tion algorithms should be open to public scrutiny. The algorithms can then be
reviewed by many experts, and users can therefore have high confidence in them.
This is the philosophy behind the National Institute of Standards and Technology
(NIST) program of standardizing encryption and hash algorithms and has led to the
widespread adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which multiple
privilege attributes are required to achieve access to a restricted resource. A good
example of this is multifactor user authentication, which requires the use of multiple
techniques, such as a password and a smart card, to authorize a user. The term is
also now applied to any technique in which a program is divided into parts that are
limited to the specific privileges they require in order to perform a specific task. This
is used to mitigate the potential damage of a computer security attack. One example
of this latter interpretation of the principle is removing high privilege operations
to another process and running that process with the higher privileges required to
perform its tasks. Day-to-day interfaces are executed in a lower privileged process.

Least privilege means that every process and every user of the system should
operate using the least set of privileges necessary to perform the task. A good exam-
ple of the use of this principle is role-based access control, described in Chapter 4.
The system security policy can identify and define the various roles of users or pro-
cesses. Each role is assigned only those permissions needed to perform its functions.
Each permission specifies a permitted access to a particular resource (such as read
and write access to a specified file or directory, connect access to a given host and
port, etc.). Unless a permission is granted explicitly, the user or process should not
be able to access the protected resource. More generally, any access control system
should allow each user only the privileges that are authorized for that user. There
is also a temporal aspect to the least privilege principle. For example, system pro-
grams or administrators who have special privileges should have those privileges
only when necessary; when they are doing ordinary activities, the privileges should
be withdrawn. Leaving them in place just opens the door to accidents.

Least common mechanism means that the design should minimize the func-
tions shared by different users, providing mutual security. This principle helps
reduce the number of unintended communication paths and reduces the amount of
hardware and software on which all users depend, thus making it easier to verify if
there are any undesirable security implications.

Psychological acceptability implies that the security mechanisms should not
interfere unduly with the work of users, while at the same time meeting the needs of
those who authorize access. If security mechanisms hinder the usability or accessibil-
ity of resources, then users may opt to turn off those mechanisms. Where possible,
security mechanisms should be transparent to the users of the system or at most
introduce minimal obstruction. In addition to not being intrusive or burdensome,
security procedures must reflect the user’s mental model of protection. If the protec-
tion procedures do not make sense to the user or if the user must translate his image
of protection into a substantially different protocol, the user is likely to make errors.

M01_STAL4855_06_GE_C01.indd 34 8/11/16 8:32 AM

1.6 / Fundamental Security Design Principles  35

Isolation is a principle that applies in three contexts. First, public access
systems should be isolated from critical resources (data, processes, etc.) to pre-
vent disclosure or tampering. In cases where the sensitivity or criticality of the
information is high, organizations may want to limit the number of systems on
which that data is stored and isolate them, either physically or logically. Physical
isolation may include ensuring that no physical connection exists between an
organization’s public access information resources and an organization’s criti-
cal information. When implementing logical isolation solutions, layers of secu-
rity services and mechanisms should be established between public systems and
secure systems responsible for protecting critical resources. Second, the processes
and files of individual users should be isolated from one another except where
it is explicitly desired. All modern operating systems provide facilities for such
isolation, so that individual users have separate, isolated process space, mem-
ory space, and file space, with protections for preventing unauthorized access.
Finally, security mechanisms should be isolated in the sense of preventing access
to those mechanisms. For example, logical access control may provide a means
of isolating cryptographic software from other parts of the host system, and for
protecting cryptographic software from tampering and the keys from replace-
ment or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-
oriented functionality. Protection is provided by encapsulating a collection of pro-
cedures and data objects in a domain of its own so that the internal structure of a
data object is accessible only to the procedures of the protected subsystem, and the
procedures may be called only at designated domain entry points.

Modularity in the context of security refers both to the development of secu-
rity functions as separate, protected modules and to the use of a modular architec-
ture for mechanism design and implementation. With respect to the use of separate
security modules, the design goal here is to provide common security functions and
services, such as cryptographic functions, as common modules. For example, numer-
ous protocols and applications make use of cryptographic functions. Rather than
implementing such functions in each protocol or application, a more secure design
is provided by developing a common cryptographic module that can be invoked by
numerous protocols and applications. The design and implementation effort can
then focus on the secure design and implementation of a single cryptographic mod-
ule and including mechanisms to protect the module from tampering. With respect
to the use of a modular architecture, each security mechanism should be able to
support migration to new technology or upgrade of new features without requiring
an entire system redesign. The security design should be modular so that individual
parts of the security design can be upgraded without the requirement to modify the
entire system.

Layering refers to the use of multiple, overlapping protection approaches
addressing the people, technology, and operational aspects of information systems.
By using multiple, overlapping protection approaches, the failure or circumven-
tion of any individual protection approach will not leave the system unprotected.
We will see throughout this text that a layering approach is often used to provide
multiple barriers between an adversary and protected information or services. This
technique is often referred to as defense in depth.

M01_STAL4855_06_GE_C01.indd 35 8/11/16 8:32 AM

36   chapter 1 / Introduction

Least astonishment means that a program or user interface should always
respond in the way that is least likely to astonish the user. For example, the mecha-
nism for authorization should be transparent enough to a user that the user has a
good intuitive understanding of how the security goals map to the provided security
mechanism.

	 1.7	A ttack Surfaces and Attack Trees

In Section 1.3, we provided an overview of the spectrum of security threats and
attacks facing computer and network systems. Section 11.1 goes into more detail
about the nature of attacks and the types of adversaries that present security threats.
This section elaborates on two concepts that are useful in evaluating and classifying
threats: attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable vulnerabilities in a
system [MANA11, HOWA03]. Examples of attack surfaces are the following:

■■ Open ports on outward facing Web and other servers, and code listening on
those ports

■■ Services available on the inside of a firewall

■■ Code that processes incoming data, e-mail, XML, office documents, and
industry-specific custom data exchange formats

■■ Interfaces, SQL, and Web forms

■■ An employee with access to sensitive information vulnerable to a social
engineering attack

Attack surfaces can be categorized in the following way:

■■ Network attack surface: This category refers to vulnerabilities over an enter-
prise network, wide-area network, or the Internet. Included in this category
are network protocol vulnerabilities, such as those used for a denial-of-service
attack, disruption of communications links, and various forms of intruder
attacks.

■■ Software attack surface: This refers to vulnerabilities in application, utility,
or operating system code. A particular focus in this category is Web server
software.

■■ Human attack surface: This category refers to vulnerabilities created by
personnel or outsiders, such as social engineering, human error, and trusted
insiders.

An attack surface analysis is useful for assessing the scale and severity of
threats to a system. A systematic analysis of points of vulnerability makes develop-
ers and security analysts aware of where security mechanisms are required. Once
an attack surface is defined, designers may be able to find ways to make the surface

M01_STAL4855_06_GE_C01.indd 36 8/11/16 8:32 AM

1.7 / Attack Surfaces and Attack Trees  37

smaller, thus making the task of the adversary more difficult. The attack surface
also provides guidance on setting priorities for testing, strengthening security mea-
sures, or modifying the service or application.

As illustrated in Figure 1.3, the use of layering, or defense in depth, and attack
surface reduction complement each other in mitigating security risk.

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of
potential techniques for exploiting security vulnerabilities [MAUW05, MOOR01,
SCHN99]. The security incident that is the goal of the attack is represented as the
root node of the tree, and the ways that an attacker could reach that goal are itera-
tively and incrementally represented as branches and subnodes of the tree. Each
subnode defines a subgoal, and each subgoal may have its own set of further sub-
goals, etc. The final nodes on the paths outward from the root, that is, the leaf nodes,
represent different ways to initiate an attack. Each node other than a leaf is either
an AND-node or an OR-node. To achieve the goal represented by an AND-node,
the subgoals represented by all of that node’s subnodes must be achieved; and for
an OR-node, at least one of the subgoals must be achieved. Branches can be labeled
with values representing difficulty, cost, or other attack attributes, so that alterna-
tive attacks can be compared.

The motivation for the use of attack trees is to effectively exploit the infor-
mation available on attack patterns. Organizations such as CERT publish security
advisories that have enabled the development of a body of knowledge about both
general attack strategies and specific attack patterns. Security analysts can use the
attack tree to document security attacks in a structured form that reveals key vul-
nerabilities. The attack tree can guide both the design of systems and applications,
and the choice and strength of countermeasures.

Figure 1.4, based on a figure in [DIMI07], is an example of an attack tree
analysis for an Internet banking authentication application. The root of the tree is

Figure 1.3  Defense in Depth and Attack Surface

Attack surface

Medium
security risk

High
security risk

Low
security riskD

ee
p

L
ay

er
in

g

Sh
al

lo
w

Small Large

Medium
security risk

M01_STAL4855_06_GE_C01.indd 37 8/11/16 8:32 AM

38   chapter 1 / Introduction

the objective of the attacker, which is to compromise a user’s account. The shaded
boxes on the tree are the leaf nodes, which represent events the comprise the
attacks. Note that in this tree in this example, all the nodes other than leaf nodes
are OR-nodes. The analysis to generate this tree considered the three components
involved in authentication:

■■ User terminal and user (UT/U): These attacks target the user equipment,
including the tokens that may be involved, such as smartcards or other pass-
word generators, as well as the actions of the user.

■■ Communications channel (CC): This type of attack focuses on communication
links.

■■ Internet banking server (IBS): These types of attacks are offline attacks against
the servers that host the Internet banking application.

Figure 1.4  An Attack Tree for Internet Banking Authentication

Bank account compromise

User credential compromise

User credential guessing

UT/U1a User surveillance

UT/U1b Theft of token and
handwritten notes

Malicious software
installation Vulnerability exploit

UT/U2a Hidden code

UT/U2b Worms

UT/U3a Smartcard analyzers

UT/U2c E-mails with
malicious code

UT/U3b Smartcard reader
manipulator

UT/U3c Brute force attacks
with PIN calculators

CC2 Sni�ng

UT/U4a Social engineering

IBS3 Web site manipulation

UT/U4b Web page
obfuscation

CC1 Pharming

Redirection of
communication toward

fraudulent site
CC3 Active man-in-the

middle attacks

IBS1 Brute force attacks

User communication
with attacker

Injection of commands

Use of known authenticated
session by attacker

Normal user authentication
with speci�ed session ID

CC4 Pre-de�ned session
IDs (session hijacking)

IBS2 Security policy
violation

M01_STAL4855_06_GE_C01.indd 38 8/11/16 8:32 AM

1.8 / A Model for Network Security  39

Five overall attack strategies can be identified, each of which exploits one or
more of the three components. The five strategies are as follows:

■■ User credential compromise: This strategy can be used against many elements
of the attack surface. There are procedural attacks, such as monitoring a user’s
action to observe a PIN or other credential, or theft of the user’s token or
handwritten notes. An adversary may also compromise token information
using a variety of token attack tools, such as hacking the smartcard or using a
brute force approach to guess the PIN. Another possible strategy is to embed
malicious software to compromise the user’s login and password. An adver-
sary may also attempt to obtain credential information via the communication
channel (sniffing). Finally, an adversary may use various means to engage in
communication with the target user, as shown in Figure 1.4.

■■ Injection of commands: In this type of attack, the attacker is able to intercept
communication between the UT and the IBS. Various schemes can be used to
be able to impersonate the valid user and so gain access to the banking system.

■■ User credential guessing: It is reported in [HILT06] that brute force attacks
against some banking authentication schemes are feasible by sending ran-
dom usernames and passwords. The attack mechanism is based on distributed
zombie personal computers, hosting automated programs for username- or
password-based calculation.

■■ Security policy violation: For example, violating the bank’s security policy in
combination with weak access control and logging mechanisms, an employee
may cause an internal security incident and expose a customer’s account.

■■ Use of known authenticated session: This type of attack persuades or forces
the user to connect to the IBS with a preset session ID. Once the user authen-
ticates to the server, the attacker may utilize the known session ID to send
packets to the IBS, spoofing the user’s identity.

Figure 1.4 provides a thorough view of the different types of attacks on an
Internet banking authentication application. Using this tree as a starting point, secu-
rity analysts can assess the risk of each attack and, using the design principles out-
lined in the preceding section, design a comprehensive security facility. [DIMI07]
provides a good account of the results of this design effort.

	 1.8	A Model for Network Security

A model for much of what we will be discussing is captured, in very general terms,
in Figure 1.5. A message is to be transferred from one party to another across some
sort of Internet service. The two parties, who are the principals in this transaction,
must cooperate for the exchange to take place. A logical information channel is
established by defining a route through the Internet from source to destination
and by the cooperative use of communication protocols (e.g., TCP/IP) by the two
principals.

M01_STAL4855_06_GE_C01.indd 39 8/11/16 8:32 AM

40   chapter 1 / Introduction

Security aspects come into play when it is necessary or desirable to protect the
information transmission from an opponent who may present a threat to confiden-
tiality, authenticity, and so on. All of the techniques for providing security have two
components:

1.	 A security-related transformation on the information to be sent. Examples in-
clude the encryption of the message, which scrambles the message so that it is
unreadable by the opponent, and the addition of a code based on the contents
of the message, which can be used to verify the identity of the sender.

2.	 Some secret information shared by the two principals and, it is hoped, unknown
to the opponent. An example is an encryption key used in conjunction with the
transformation to scramble the message before transmission and unscramble
it on reception.7

A trusted third party may be needed to achieve secure transmission. For
example, a third party may be responsible for distributing the secret information
to the two principals while keeping it from any opponent. Or a third party may be
needed to arbitrate disputes between the two principals concerning the authenticity
of a message transmission.

This general model shows that there are four basic tasks in designing a
particular security service:

1.	 Design an algorithm for performing the security-related transformation. The
algorithm should be such that an opponent cannot defeat its purpose.

2.	 Generate the secret information to be used with the algorithm.

7Chapter 3 discusses a form of encryption, known as asymmetric encryption, in which only one of the two
principals needs to have the secret information.

Figure 1.5  Model for Network Security

Information
channelSecurity-related

transformation

Sender

Secret
information

M
es

sa
ge

M
es

sa
ge

Se
cu

re
m

es
sa

ge

Se
cu

re
m

es
sa

ge

Recipient

Opponent

Trusted third party
(e.g., arbiter, distributer
of secret information)

Security-related
transformation

Secret
information

M01_STAL4855_06_GE_C01.indd 40 8/11/16 8:32 AM

1.8 / A Model for Network Security  41

3.	 Develop methods for the distribution and sharing of the secret information.

4.	 Specify a protocol to be used by the two principals that make use of the security
algorithm and the secret information to achieve a particular security service.

Parts One and Two of this book concentrate on the types of security mech-
anisms and services that fit into the model shown in Figure 1.5. However, there
are other security-related situations of interest that do not neatly fit this model
but are considered in this book. A general model of these other situations is illus-
trated by Figure 1.6, which reflects a concern for protecting an information system
from unwanted access. Most readers are familiar with the concerns caused by the
existence of hackers who attempt to penetrate systems that can be accessed over
a network. The hacker can be someone who, with no malign intent, simply gets
satisfaction from breaking and entering a computer system. The intruder can be a
disgruntled employee who wishes to do damage or a criminal who seeks to exploit
computer assets for financial gain (e.g., obtaining credit card numbers or perform-
ing illegal money transfers).

Another type of unwanted access is the placement in a computer system of
logic that exploits vulnerabilities in the system and that can affect application pro-
grams as well as utility programs, such as editors and compilers. Programs can pres-
ent two kinds of threats:

1.	 Information access threats: Intercept or modify data on behalf of users who
should not have access to that data.

2.	 Service threats: Exploit service flaws in computers to inhibit use by legitimate
users.

Viruses and worms are two examples of software attacks. Such attacks can be
introduced into a system by means of a disk that contains the unwanted logic con-
cealed in otherwise useful software. They also can be inserted into a system across a
network; this latter mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into two
broad categories (see Figure 1.6). The first category might be termed a gatekeeper
function. It includes password-based login procedures that are designed to deny
access to all but authorized users and screening logic that is designed to detect and
reject worms, viruses, and other similar attacks. Once either an unwanted user

Figure 1.6  Network Access Security Model

Computing resources
 (processor, memory, I/O)

Data

Processes

Software

Internal security controls

Information system

Gatekeeper
function

Opponent
—human (e.g., hacker)
—software
 (e.g., virus, worm)

Access channel

M01_STAL4855_06_GE_C01.indd 41 8/11/16 8:32 AM

42   chapter 1 / Introduction

or unwanted software gains access, the second line of defense consists of a vari-
ety of internal controls that monitor activity and analyze stored information in an
attempt to detect the presence of unwanted intruders. These issues are explored in
Part Three.

	 1.9	S tandards

Many of the security techniques and applications described in this book have
been specified as standards. Additionally, standards have been developed to
cover management practices and the overall architecture of security mechanisms
and services. Throughout this book, we describe the most important standards in
use or being developed for various aspects of cryptography and network security.
Various organizations have been involved in the development or promotion of
these standards. The most important (in the current context) of these organizations
are as follows.

■■ National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to
U.S. government use and to the promotion of U.S. private-sector innovation.
Despite its national scope, NIST Federal Information Processing Standards
(FIPS) and Special Publications (SP) have a worldwide impact.

■■ Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in address-
ing issues that confront the future of the Internet and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

A more detailed discussion of these organizations is contained in Appendix C.

	 1.10	Key Terms, Review Questions, and Problems

Key Terms

access control
active attack
authentication
authenticity
availability
data confidentiality
data integrity

denial of service
encryption
integrity
intruder
masquerade
nonrepudiation
OSI security architecture

passive attack
replay
security attacks
security mechanisms
security services
traffic analysis

M01_STAL4855_06_GE_C01.indd 42 8/11/16 8:32 AM

1.10 / Key Terms, Review Questions, and Problems  43

Review Questions

	 1.1	 What is the OSI security architecture?
	 1.2	 Briefly explain masquerade attack with an example.
	 1.3	 What is the difference between security threats and attacks?
	 1.4	 Why are passive attacks difficult to detect and active attacks difficult to prevent?
	 1.5	 Identify the different security attacks prevented by the security mechanisms defined

in X.800.
	 1.6	 List and briefly define the fundamental security design principles.
	 1.7	 Explain the difference between an attack surface and an attack tree.

Problems

	 1.1	 Consider an automated teller machine (ATM) in which users provide a personal
identification number (PIN) and a card for account access. Give examples of confi-
dentiality, integrity, and availability requirements associated with the system. In each
case, indicate the degree of importance of the requirement.

	 1.2	 Repeat Problem 1.1 for a telephone switching system that routes calls through a
switching network based on the telephone number requested by the caller.

	 1.3	 Consider a desktop publishing system used to produce documents for various
organizations.
a.	 Give an example of a type of publication for which confidentiality of the stored

data is the most important requirement.
b.	 Give an example of a type of publication in which data integrity is the most

important requirement.
c.	 Give an example in which system availability is the most important requirement.

	 1.4	 For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
a.	 A portal maintained by the Government to provide information regarding its

departments and services.
b.	 A hospital managing the medical records of its patients.
c.	 A financial organization managing routine administrative information (not

privacy-related information).
d.	 An information system used for large acquisitions in a contracting organization

that contains both sensitive, pre-solicitation phase contract information and rou-
tine administrative information. Assess the impact for the two data sets separately
and the information system as a whole.

e.	 The Examinations department of a University maintains examination particulars,
such as question papers of forthcoming examinations, grades obtained, and
examiner details. The University’s administrative department maintains the
students’ attendance particulars and internal assessment results. Assess the impact
for the two data sets separately and the information system as a whole.

	 1.5	 Draw a matrix similar to Table 1.4 that shows the relationship between security
attacks and mechanisms.

	 1.6	 Draw a matrix similar to Table 1.4 that shows the relationship between security
mechanisms and services.

	 1.7	 Develop an attack tree for gaining access to customer account details from the
database of a bank.

	 1.8	 Consider a company whose operations are housed in two buildings on the same prop-
erty; one building is headquarters, the other building contains network and computer
services. The property is physically protected by a fence around the perimeter. The
only entrance to the property is through the fenced perimeter. In addition to the

M01_STAL4855_06_GE_C01.indd 43 8/11/16 8:32 AM

44   chapter 1 / Introduction

perimeter fence, physical security consists of a guarded front gate. The local networks
are split between the Headquarters’ LAN and the Network Services’ LAN. Internet
users connect to the Web server through a firewall. Dial-up users get access to a
particular server on the Network Services’ LAN. Develop an attack tree in which
the root node represents disclosure of proprietary secrets. Include physical, social
engineering, and technical attacks. The tree may contain both AND and OR nodes.
Develop a tree that has at least 15 leaf nodes.

	 1.9	 Read all of the classic papers cited in the Recommended Reading section for this
chapter, available at the Author Web site at WilliamStallings.com/NetworkSecurity.
The papers are available at box.com/NetSec6e. Compose a 500–1000 word paper (or
8 to 12 slide PowerPoint presentation) that summarizes the key concepts that emerge
from these papers, emphasizing concepts that are common to most or all of the papers.

M01_STAL4855_06_GE_C01.indd 44 8/11/16 8:32 AM

http://WilliamStallings.com/NetworkSecurity
http://box.com/NetSec6e

45

Part One: Cryptography

Chapter

Symmetric Encryption and
Message Confidentiality

2.1	 Symmetric Encryption Principles

Cryptography
Cryptanalysis
Feistel Cipher Structure

2.2	 Symmetric Block Encryption Algorithms

Data Encryption Standard
Triple DES
Advanced Encryption Standard

2.3	 Random and Pseudorandom Numbers

The Use of Random Numbers
TRNGs, PRNGs, and PRFs
Algorithm Design

2.4	 Stream Ciphers and RC4

Stream Cipher Structure
The RC4 Algorithm

2.5	 Cipher Block Modes of Operation

Electronic Codebook Mode
Cipher Block Chaining Mode
Cipher Feedback Mode
Counter Mode

2.6	 Key Terms, Review Questions, and Problems

M02_STAL4855_06_GE_C02.indd 45 9/8/16 8:44 PM

46   chapter 2 / Symmetric Encryption and Message Confidentiality

Symmetric encryption, also referred to as conventional encryption, secret-key, or
single-key encryption, was the only type of encryption in use prior to the develop-
ment of public-key encryption in the late 1970s.1 It remains by far the most widely
used of the two types of encryption.

This chapter begins with a look at a general model for the symmetric
encryption process; this will enable us to understand the context within which the
algorithms are used. Then we look at three important block encryption algorithms:
DES, triple DES, and AES. This is followed by a discussion of random and pseu-
dorandom number generation. Next, the chapter introduces symmetric stream
encryption and describes the widely used stream cipher RC4. Finally, we look at the
important topic of block cipher modes of operation.

	 2.1	 Symmetric Encryption Principles

A symmetric encryption scheme has five ingredients (Figure 2.1):

■■ Plaintext: This is the original message or data that is fed into the algorithm
as input.

■■ Encryption algorithm: The encryption algorithm performs various substitutions
and transformations on the plaintext.

■■ Secret key: The secret key is also input to the algorithm. The exact substitutions
and transformations performed by the algorithm depend on the key.

1Public-key encryption was first described in the open literature in 1976; the National Security Agency
(NSA) claims to have discovered it some years earlier.

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Present an overview of the main concepts of symmetric cryptography.

◆◆ Explain the difference between cryptanalysis and brute-force attack.

◆◆ Summarize the functionality of DES.

◆◆ Present an overview of AES.

◆◆ Explain the concepts of randomness and unpredictability with respect to
random numbers.

◆◆ Understand the differences among true random number generators,
pseudorandom number generators, and pseudorandom functions.

◆◆ Present an overview of stream ciphers and RC4.

◆◆ Compare and contrast ECB, CBC, CFB, and counter modes of operation.

M02_STAL4855_06_GE_C02.indd 46 9/8/16 8:44 PM

2.1 / Symmetric Encryption Principles  47

Figure 2.1  Simplified Model of Symmetric Encryption

Plaintext
input

Y = E[K, X] X = D[K, Y]

X

KK

Transmitted
ciphertext

Plaintext
output

Secret key shared by
sender and recipient

Secret key shared by
sender and recipient

Encryption algorithm
(e.g., AES)

Decryption algorithm
(reverse of encryption

algorithm)

■■ Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

■■ Decryption algorithm: This is essentially the encryption algorithm run in re-
verse. It takes the ciphertext and the same secret key and produces the original
plaintext.

There are two requirements for secure use of symmetric encryption:

1.	 We need a strong encryption algorithm. At a minimum, we would like the algo-
rithm to be such that an opponent who knows the algorithm and has access to
one or more ciphertexts would be unable to decipher the ciphertext or figure
out the key. This requirement is usually stated in a stronger form: The oppo-
nent should be unable to decrypt ciphertext or discover the key even if he or
she is in possession of a number of ciphertexts together with the plaintext that
produced each ciphertext.

2.	 Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

It is important to note that the security of symmetric encryption depends on
the secrecy of the key, not the secrecy of the algorithm. That is, it is assumed that
it is impractical to decrypt a message on the basis of the ciphertext plus knowledge
of the encryption/decryption algorithm. In other words, we do not need to keep the
algorithm secret; we need to keep only the key secret.

This feature of symmetric encryption is what makes it feasible for widespread
use. The fact that the algorithm need not be kept secret means that manufactur-
ers can and have developed low-cost chip implementations of data encryption
algorithms. These chips are widely available and incorporated into a number of
products. With the use of symmetric encryption, the principal security problem is
maintaining the secrecy of the key.

M02_STAL4855_06_GE_C02.indd 47 9/8/16 8:44 PM

48   chapter 2 / Symmetric Encryption and Message Confidentiality

Cryptography

Cryptographic systems are generically classified along three independent
dimensions:

1.	 The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution, in
which each element in the plaintext (bit, letter, group of bits or letters) is
mapped into another element; and transposition, in which elements in the
plaintext are rearranged. The fundamental requirement is that no informa-
tion be lost (i.e., that all operations be reversible). Most systems, referred to
as product systems, involve multiple stages of substitutions and transpositions.

2.	 The number of keys used. If both sender and receiver use the same key, the
system is referred to as symmetric, single-key, secret-key, or conventional
encryption. If the sender and receiver each use a different key, the system is
referred to as asymmetric, two-key, or public-key encryption.

3.	 The way in which the plaintext is processed. A block cipher processes the
input one block of elements at a time, producing an output block for each
input block. A stream cipher processes the input elements continuously, pro-
ducing output one element at a time, as it goes along.

Cryptanalysis

The process of attempting to discover the plaintext or key is known as cryptanalysis.
The strategy used by the cryptanalyst depends on the nature of the encryption
scheme and the information available to the cryptanalyst.

Table 2.1 summarizes the various types of cryptanalytic attacks based on the
amount of information known to the cryptanalyst. The most difficult problem is
presented when all that is available is the ciphertext only. In some cases, not even
the encryption algorithm is known, but in general, we can assume that the opponent
does know the algorithm used for encryption. One possible attack under these cir-
cumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that
is concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the oppo-
nent has the least amount of information to work with. In many cases, however,
the analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that cer-
tain plaintext patterns will appear in a message. For example, a file that is encoded
in the Postscript format always begins with the same pattern, or there may be a
standardized header or banner to an electronic funds transfer message, and so on.
All of these are examples of known plaintext. With this knowledge, the analyst may
be able to deduce the key on the basis of the way in which the known plaintext is
transformed.

M02_STAL4855_06_GE_C02.indd 48 9/8/16 8:44 PM

2.1 / Symmetric Encryption Principles  49

Type of Attack Known to Cryptanalyst

Ciphertext only ■ Encryption algorithm
■ Ciphertext to be decoded

Known plaintext ■ Encryption algorithm
■ Ciphertext to be decoded
■ One or more plaintext–ciphertext pairs formed with the secret key

Chosen plaintext ■ Encryption algorithm
■ Ciphertext to be decoded
■ �Plaintext message chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret key

Chosen ciphertext ■ Encryption algorithm
■ Ciphertext to be decoded
■ �Purported ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

Chosen text ■ Encryption algorithm
■ Ciphertext to be decoded
■ �Plaintext message chosen by cryptanalyst, together with its corresponding

ciphertext generated with the secret key
■ �Purported ciphertext chosen by cryptanalyst, together with its corresponding

decrypted plaintext generated with the secret key

Table 2.1  Types of Attacks on Encrypted Messages

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmit-
ted, the opponent may know the placement of certain key words in the header of
the file. As another example, the source code for a program developed by a corpo-
ration might include a copyright statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the sys-
tem a message chosen by the analyst, then a chosen-plaintext attack is possible. In
general, if the analyst is able to choose the messages to encrypt, the analyst may
deliberately pick patterns that can be expected to reveal the structure of the key.

Table 2.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext
attack.

An encryption scheme is computationally secure if the ciphertext generated
by the scheme meets one or both of the following criteria:

■■ The cost of breaking the cipher exceeds the value of the encrypted information.

■■ The time required to break the cipher exceeds the useful lifetime of the
information.

M02_STAL4855_06_GE_C02.indd 49 9/8/16 8:44 PM

50   chapter 2 / Symmetric Encryption and Message Confidentiality

Unfortunately, it is very difficult to estimate the amount of effort required
to cryptanalyze ciphertext successfully. However, assuming there are no inherent
mathematical weaknesses in the algorithm, then a brute-force approach is indicated.
A brute-force attack involves trying every possible key until an intelligible transla-
tion of the ciphertext into plaintext is obtained. On average, half of all possible keys
must be tried to achieve success. That is, if there are x different keys, on average
an attacker would discover the actual key after x/2 tries. It is important to note that
there is more to a brute-force attack than simply running through all possible keys.
Unless known plaintext is provided, the analyst must be able to recognize plaintext
as plaintext. If the message is just plaintext in English, then the result pops out eas-
ily, although the task of recognizing English would have to be automated. If the text
message has been compressed before encryption, then recognition is more difficult.
And if the message is some more general type of data, such as a numerical file, and
this has been compressed, the problem becomes even more difficult to automate.
Thus, to supplement the brute-force approach, some degree of knowledge about
the expected plaintext is needed, and some means of automatically distinguishing
plaintext from garble is also needed.

Feistel Cipher Structure

Many symmetric block encryption algorithms, including DES, have a structure first
described by Horst Feistel of IBM in 1973 [FEIS73] and shown in Figure 2.2. The
inputs to the encryption algorithm are a plaintext block of length 2w bits and a key
K. The plaintext block is divided into two halves, LE0 and RE0. The two halves
of the data pass through n rounds of processing and then combine to produce the
ciphertext block. Each round i has as inputs LEi- 1 and REi- 1 derived from the pre-
vious round, as well as a subkey Ki derived from the overall K. In general, the sub-
keys Ki are different from K and from each other and are generated from the key
by a subkey generation algorithm. In Figure 2.2, 16 rounds are used, although any
number of rounds could be implemented. The right-hand side of Figure 2.2 shows
the decryption process.

All rounds have the same structure. A substitution is performed on the left
half of the data. This is done by applying a round function F to the right half of the
data and then taking the exclusive-OR (XOR) of the output of that function and
the left half of the data. The round function has the same general structure for each
round but is parameterized by the round subkey Ki. Following this substitution,
a permutation is performed that consists of the interchange of the two halves of
the data.

The Feistel structure is a particular example of the more general structure
used by all symmetric block ciphers. In general, a symmetric block cipher consists of
a sequence of rounds, with each round performing substitutions and permutations
conditioned by a secret key value. The exact realization of a symmetric block cipher
depends on the choice of the following parameters and design features.

■■ Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed. A block size of 128 bits is a
reasonable trade-off and is nearly universal among recent block cipher designs.

M02_STAL4855_06_GE_C02.indd 50 9/8/16 8:44 PM

2.1 / Symmetric Encryption Principles  51

Figure 2.2  Feistel Encryption and Decryption (16 rounds)

Output (ciphertext)

K1

LD0 = RE16 RD0 = LE16

LD2 = RE14 RD2 = LE14

LD14 = RE2 RD14 = LE2

LD16 = RE0

LD17 = RE0

RD16 = LE0

RD17 = LE0

RD1 = LE15LD1 = RE15

RD15 = LE1LD15 = RE1

Input (ciphertext)

Output (plaintext)

R
ou

nd
 1

K1

K2

K15

K16

K2

K15

K16

F

LE0 RE0

Input (plaintext)

LE1 RE1

LE2 RE2

F

F

LE14 RE14

LE15 RE15

LE16 RE16

LE17 RE17

F

F

F

F

F

R
ou

nd
 2

R
ou

nd
 1

5
R

ou
nd

 1
6

R
ou

nd
 1

6
R

ou
nd

 1
5

R
ou

nd
 2

R
ou

nd
 1

■■ Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The most common key length in modern algorithms is
128 bits.

■■ Number of rounds: The essence of a symmetric block cipher is that a single
round offers inadequate security but that multiple rounds offer increasing
security. A typical size is from 10 to 16 rounds.

M02_STAL4855_06_GE_C02.indd 51 9/8/16 8:44 PM

52   chapter 2 / Symmetric Encryption and Message Confidentiality

■■ Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

■■ Round function: Again, greater complexity generally means greater resistance
to cryptanalysis.

There are two other considerations in the design of a symmetric block cipher:

■■ Fast software encryption/decryption: In many cases, encryption is embedded
in applications or utility functions in such a way as to preclude a hardware im-
plementation. Accordingly, the speed of execution of the algorithm becomes a
concern.

■■ Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy
to analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

Decryption with a symmetric block cipher is essentially the same as the
encryption process. The rule is as follows: Use the ciphertext as input to the algo-
rithm, but use the subkeys Ki in reverse order. That is, use Kn in the first round,
Kn - 1 in the second round, and so on until K1 is used in the last round. This is a nice
feature, because it means we need not implement two different algorithms—one for
encryption and one for decryption.

	 2.2	 Symmetric Block Encryption Algorithms

The most commonly used symmetric encryption algorithms are block ciphers. A
block cipher processes the plaintext input in fixed-sized blocks and produces a
block of ciphertext of equal size for each plaintext block. This section focuses on
the three most important symmetric block ciphers: the Data Encryption Standard
(DES), triple DES (3DES), and the Advanced Encryption Standard (AES).

Data Encryption Standard

Until the introduction of the Advanced Encryption Standard in 2001, the most
widely used encryption scheme was based on the Data Encryption Standard (DES)
issued in 1977 as Federal Information Processing Standard 46 (FIPS 46) by the
National Bureau of Standards, now known as the National Institute of Standards
and Technology (NIST). The algorithm itself is referred to as the Data Encryption
Algorithm (DEA).2

2The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchangeably.
However, the most recent edition of the DES document includes a specification of the DEA described
here plus the triple DEA (3DES) described subsequently. Both DEA and 3DES are part of the Data
Encryption Standard. Furthermore, until the recent adoption of the official term 3DES, the triple DEA
algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience, we
will use 3DES.

M02_STAL4855_06_GE_C02.indd 52 9/8/16 8:44 PM

2.2 / Symmetric Block Encryption Algorithms  53

Description of the Algorithm  The plaintext is 64 bits in length and the key is
56 bits in length; longer plaintext amounts are processed in 64-bit blocks. The DES
structure is a minor variation of the Feistel network shown in Figure 2.2. There are
16 rounds of processing. From the original 56-bit key, 16 subkeys are generated, one
of which is used for each round.

The process of decryption with DES is essentially the same as the encryption
process. The rule is as follows: Use the ciphertext as input to the DES algorithm, but
use the subkeys Ki in reverse order. That is, use K16 on the first iteration, K15 on the
second iteration, and so on until K1 is used on the 16th and last iteration.

The Strength of DES  Concerns about the strength of DES fall into two catego-
ries: concerns about the algorithm itself and concerns about the use of a 56-bit key.
The first concern refers to the possibility that cryptanalysis is possible by exploiting
the characteristics of the DES algorithm. Over the years, there have been numerous
attempts to find and exploit weaknesses in the algorithm, making DES the most-
studied encryption algorithm in existence. Despite numerous approaches, no one
has so far succeeded in discovering a fatal weakness in DES.3

A more serious concern is key length. With a key length of 56 bits, there are
256 possible keys, which is approximately 7.2 * 1016 keys. Thus, on the face of it, a
brute-force attack appears impractical. Assuming that on average half the key space
has to be searched, a single machine performing one DES encryption per microsec-
ond would take more than a thousand years to break the cipher.

However, the assumption of one encryption per microsecond is overly conser-
vative. DES finally and definitively proved insecure in July 1998, when the Electronic
Frontier Foundation (EFF) announced that it had broken a DES encryption using
a special-purpose “DES cracker” machine that was built for less than $250,000. The
attack took less than three days. The EFF has published a detailed description of the
machine, enabling others to build their own cracker [EFF98]. And, of course, hard-
ware prices will continue to drop as speeds increase, making DES virtually worthless.

With current technology, it is not even necessary to use special, purpose-built
hardware. Rather, the speed of commercial, off-the-shelf processors threaten the
security of DES. A paper from Seagate Technology [SEAG08] suggests that a rate
of one billion (109) key combinations per second is reasonable for today’s multicore
computers. Recent offerings confirm this. Both Intel and AMD now offer hardware-
based instructions to accelerate the use of AES. Tests run on a contemporary multi-
core Intel machine resulted in an encryption rate of about half a billion [BASU12].
Another recent analysis suggests that with contemporary supercomputer technol-
ogy, a rate of 1013 encryptions/s is reasonable [AROR12].

Considering these results, Table 2.2 shows how much time is required for a
brute-force attack for various key sizes. As can be seen, a single PC can break DES
in about a year; if multiple PCs work in parallel, the time is drastically shortened.
And today’s supercomputers should be able to find a key in about an hour. Key
sizes of 128 bits or greater are effectively unbreakable using simply a brute-force ap-
proach. Even if we managed to speed up the attacking system by a factor of 1 trillion
(1012), it would still take over 100,000 years to break a code using a 128-bit key.

3At least, no one has publicly acknowledged such a discovery.

M02_STAL4855_06_GE_C02.indd 53 9/8/16 8:44 PM

54   chapter 2 / Symmetric Encryption and Message Confidentiality

Figure 2.3  Triple DES

E

K1

D

K2

E

K3

P A B C

(a) Encryption

D

K3

E

K2

D

K1

C B A P

(b) Decryption

Fortunately, there are a number of alternatives to DES, the most important of
which are triple DES and AES, discussed in the remainder of this section.

Triple DES

Triple DES (3DES) was first standardized for use in financial applications in ANSI
standard X9.17 in 1985. 3DES was incorporated as part of the Data Encryption
Standard in 1999 with the publication of FIPS 46-3.

3DES uses three keys and three executions of the DES algorithm. The func-
tion follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 2.3a):

C = E(K3, D(K2, E(K1, P)))

where

C = ciphertext

P = plaintext

E[K, X] = encryption of X using key K
D[K, Y] = decryption of Y using key K

Table 2.2  Average Time Required for Exhaustive Key Search

Key Size (bits) Cipher
Number of

Alternative Keys
Time Required at 109

Decryptions/s

Time Required
at 1013

Decryptions/s

56 DES 256 ≈ 7.2 * 1016 255 ns = 1.125 years 1 hour

128 AES 2128 ≈ 3.4 * 1038 2127 ns = 5.3 * 1021 years 5.3 * 1017 years

168 Triple DES 2168 ≈ 3.7 * 1050 2167 ns = 5.8 * 1033 years 5.8 * 1029 years

192 AES 2192 ≈ 6.3 * 1057 2191 ns = 9.8 * 1040 years 9.8 * 1036 years

256 AES 2256 ≈ 1.2 * 1077 2255 ns = 1.8 * 1060 years 1.8 * 1056 years

M02_STAL4855_06_GE_C02.indd 54 9/8/16 8:44 PM

2.2 / Symmetric Block Encryption Algorithms  55

Decryption is simply the same operation with the keys reversed (Figure 2.3b):

P = D(K1, E(K2, D(K3, C)))

There is no cryptographic significance to the use of decryption for the second
stage of 3DES encryption. Its only advantage is that it allows users of 3DES to
decrypt data encrypted by users of the older single DES:

C = E(K1, D(K1, E(K1, P))) = E[K, P]

With three distinct keys, 3DES has an effective key length of 168 bits. FIPS
46-3 also allows for the use of two keys, with K1 = K3; this provides for a key length
of 112 bits. FIPS 46-3 includes the following guidelines for 3DES.

■■ 3DES is the FIPS-approved symmetric encryption algorithm of choice.

■■ The original DES, which uses a single 56-bit key, is permitted under the standard
for legacy systems only. New procurements should support 3DES.

■■ Government organizations with legacy DES systems are encouraged to
transition to 3DES.

■■ It is anticipated that 3DES and the Advanced Encryption Standard (AES) will
coexist as FIPS-approved algorithms, allowing for a gradual transition to AES.

It is easy to see that 3DES is a formidable algorithm. Because the underlying
cryptographic algorithm is DEA, 3DES can claim the same resistance to cryptanaly-
sis based on the algorithm as is claimed for DEA. Furthermore, with a 168-bit key
length, brute-force attacks are effectively impossible.

Ultimately, AES is intended to replace 3DES, but this process will take a
number of years. NIST anticipates that 3DES will remain an approved algorithm
(for U.S. government use) for the foreseeable future.

Advanced Encryption Standard

3DES has two attractions that assure its widespread use over the next few years.
First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack
of DEA. Second, the underlying encryption algorithm in 3DES is the same as in
DEA. This algorithm has been subjected to more scrutiny than any other encryp-
tion algorithm over a longer period of time, and no effective cryptanalytic attack
based on the algorithm rather than brute force has been found. Accordingly, there
is a high level of confidence that 3DES is very resistant to cryptanalysis. If security
were the only consideration, then 3DES would be an appropriate choice for a stan-
dardized encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish
in software. The original DEA was designed for mid-1970s hardware implementa-
tion and does not produce efficient software code. 3DES, which has three times
as many rounds as DEA, is correspondingly slower. A secondary drawback is that
both DEA and 3DES use a 64-bit block size. For reasons of both efficiency and
security, a larger block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-
term use. As a replacement, NIST in 1997 issued a call for proposals for a new

M02_STAL4855_06_GE_C02.indd 55 9/8/16 8:44 PM

56   chapter 2 / Symmetric Encryption and Message Confidentiality

Advanced Encryption Standard (AES), which should have a security strength equal
to or better than 3DES and significantly improved efficiency. In addition to these
general requirements, NIST specified that AES must be a symmetric block cipher
with a block length of 128 bits and support for key lengths of 128, 192, and 256 bits.
Evaluation criteria included security, computational efficiency, memory require-
ments, hardware and software suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A sec-
ond round narrowed the field to five algorithms. NIST completed its evaluation
process and published a final standard (FIPS PUB 197) in November of 2001. NIST
selected Rijndael as the proposed AES algorithm. The two researchers who devel-
oped and submitted Rijndael for the AES are both cryptographers from Belgium:
Dr. Joan Daemen and Dr. Vincent Rijmen.

Overview of the Algorithm  AES uses a block length of 128 bits and a key length
that can be 128, 192, or 256 bits. In the description of this section, we assume a key
length of 128 bits, which is likely to be the one most commonly implemented.

The input to the encryption and decryption algorithms is a single 128-bit
block. In FIPS PUB 197, this block is depicted as a square matrix of bytes. This
block is copied into the State array, which is modified at each stage of encryption or
decryption. After the final stage, State is copied to an output matrix. Similarly, the
128-bit key is depicted as a square matrix of bytes. This key is then expanded into an
array of key schedule words: Each word is four bytes and the total key schedule is
44 words for the 128-bit key. The ordering of bytes within a matrix is by column. So,
for example, the first four bytes of a 128-bit plaintext input to the encryption cipher
occupy the first column of the in matrix, the second four bytes occupy the second
column, and so on. Similarly, the first four bytes of the expanded key, which form a
word, occupy the first column of the w matrix.

The following comments give some insight into AES.

1.	 One noteworthy feature of this structure is that it is not a Feistel structure.
Recall that in the classic Feistel structure, half of the data block is used to
modify the other half of the data block, and then the halves are swapped. AES
does not use a Feistel structure but processes the entire data block in parallel
during each round using substitutions and permutation.

2.	 The key that is provided as input is expanded into an array of forty-four 32-bit
words, w[i]. Four distinct words (128 bits) serve as a round key for each round.

3.	 Four different stages are used, one of permutation and three of substitution
(Figure 2.4):

■■ Substitute bytes: Uses a table, referred to as an S-box,4 to perform a byte-
by-byte substitution of the block.

■■ Shift rows: A simple permutation that is performed row by row.

4The term S-box, or substitution box, is commonly used in the description of symmetric ciphers to refer to
a table used for a table-lookup type of substitution mechanism.

M02_STAL4855_06_GE_C02.indd 56 9/8/16 8:44 PM

2.2 / Symmetric Block Encryption Algorithms  57

■■ Mix columns: A substitution that alters each byte in a column as a function
of all of the bytes in the column.

■■ Add round key: A simple bitwise XOR of the current block with a portion
of the expanded key.

4.	 The structure is quite simple. For both encryption and decryption, the cipher
begins with an Add Round Key stage, followed by nine rounds that each
includes all four stages, followed by a tenth round of three stages. Figure 2.5
depicts the structure of a full encryption round.

Figure 2.4  AES Encryption and Decryption

Add round key

w[4, 7]

Plaintext
(16 bytes)

Plaintext
(16 bytes)

Substitute bytes

Expand key

Shift rows

Mix columnsR
ou

nd
 1

R
ou

nd
 9

R
ou

nd
 1

0

Add round key

•
•
•

Substitute bytes

Shift rows

Mix columns

Add round key

Substitute bytes

Shift rows

Add round key

Ciphertext
(16 bytes)

(a) Encryption

Key
(16 bytes)

Add round key

Inverse sub bytes

Inverse shift rows

Inverse mix cols

R
ou

nd
 1

0
R

ou
nd

 9
R

ou
nd

 1

Add round key

•
•
•

Inverse sub bytes

Inverse shift rows

Inverse mix cols

Add round key

Inverse sub bytes

Inverse shift rows

Add round key

Ciphertext
(16 bytes)

(b) Decryption

w[36, 39]

w[40, 43]

w[0, 3]

M02_STAL4855_06_GE_C02.indd 57 9/8/16 8:44 PM

58   chapter 2 / Symmetric Encryption and Message Confidentiality

S
S

S
S

S
S

S
S

S
S

S
S

S
S

S
S

Su
bB

yt
es

St
at

e

St
at

e

St
at

e

St
at

e

St
at

e

Sh
ift

R
ow

s

M
ix

C
ol

um
ns

A
dd

R
ou

nd
K

ey

M
M

M
M

r 0
r 1

r 2
r 3

r 4
r 5

r 6
r 7

r 8
r 9

r 1
0

r 1
1

r 1
2

r 1
3

r 1
4

r 1
5

F
ig

ur
e

2.
5 

A
E

S
E

nc
ry

pt
io

n
R

ou
nd

M02_STAL4855_06_GE_C02.indd 58 9/8/16 8:44 PM

2.3 / Random and Pseudorandom Numbers  59

5.	 Only the Add Round Key stage makes use of the key. For this reason, the
cipher begins and ends with an Add Round Key stage. Any other stage, applied
at the beginning or end, is reversible without knowledge of the key and so
would add no security.

6.	 The Add Round Key stage by itself would not be formidable. The other three
stages together scramble the bits, but by themselves, they would provide no
security because they do not use the key. We can view the cipher as alternat-
ing operations of XOR encryption (Add Round Key) of a block, followed by
scrambling of the block (the other three stages), followed by XOR encryption,
and so on. This scheme is both efficient and highly secure.

7.	 Each stage is easily reversible. For the Substitute Byte, Shift Row, and Mix
Columns stages, an inverse function is used in the decryption algorithm. For
the Add Round Key stage, the inverse is achieved by XORing the same round
key to the block, using the result that A ⊕ B ⊕ B = A.

8.	 As with most block ciphers, the decryption algorithm makes use of the
expanded key in reverse order. However, the decryption algorithm is not
identical to the encryption algorithm. This is a consequence of the particular
structure of AES.

9.	 Once it is established that all four stages are reversible, it is easy to verify
that decryption does recover the plaintext. Figure 2.4 lays out encryption
and decryption going in opposite vertical directions. At each horizontal point
(e.g., the dashed line in the figure), State is the same for both encryption and
decryption.

10.	 The final round of both encryption and decryption consists of only three stages.
Again, this is a consequence of the particular structure of AES and is required
to make the cipher reversible.

	 2.3	R andom and Pseudorandom Numbers

Random numbers play an important role in the use of encryption for various
network security applications. We provide an overview in this section. The topic is
examined in more detail in Appendix E.

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of
random numbers. For example,

■■ Generation of keys for the RSA public-key encryption algorithm (described in
Chapter 3) and other public-key algorithms.

■■ Generation of a stream key for symmetric stream cipher (discussed in the
following section).

M02_STAL4855_06_GE_C02.indd 59 9/8/16 8:44 PM

60   chapter 2 / Symmetric Encryption and Message Confidentiality

■■ Generation of a symmetric key for use as a temporary session key. This func-
tion is used in a number of networking applications, such as Transport Layer
Security (Chapter 5), Wi-Fi (Chapter 6), e-mail security (Chapter 7), and IP
security (Chapter 8).

■■ In a number of key distribution scenarios, such as Kerberos (Chapter 4),
random numbers are used for handshaking to prevent replay attacks.

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness and unpredictability.

Randomness  Traditionally, the concern in the generation of a sequence of allegedly
random numbers has been that the sequence of numbers be random in some well-
defined statistical sense. The following criteria are used to validate that a sequence
of numbers is random.

■■ Uniform distribution: The distribution of bits in the sequence should be
uniform; that is, the frequency of occurrence of ones and zeros should be
approximately the same.

■■ Independence: No one subsequence in the sequence can be inferred from
the others.

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no
such test to “prove” independence. Rather, a number of tests can be applied to
demonstrate if a sequence does not exhibit independence. The general strategy is
to apply a number of such tests until the confidence that independence exists is
sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptogra-
phy. For example, a fundamental requirement of the RSA public-key encryption
scheme discussed in Chapter 3 is the ability to generate prime numbers. In gen-
eral, it is difficult to determine if a given large number N is prime. A brute-force
approach would be to divide N by every odd integer less than 2N. If N is on the
order, say, of 10150 (a not uncommon occurrence in public-key cryptography), such
a brute-force approach is beyond the reach of human analysts and their computers.
However, a number of effective algorithms exist that test the primality of a num-
ber by using a sequence of randomly chosen integers as input to relatively simple
computations. If the sequence is sufficiently long (but far, far less than 210150),
the primality of a number can be determined with near certainty. This type of
approach, known as randomization, crops up frequently in the design of algorithms.
In essence, if a problem is too hard or time-consuming to solve exactly, a simpler,
shorter approach based on randomization is used to provide an answer with any
desired level of confidence.

Unpredictability  In applications such as reciprocal authentication and session key
generation, the requirement is not so much that the sequence of numbers be statisti-
cally random but that the successive members of the sequence are unpredictable.
With “true” random sequences, each number is statistically independent of other

M02_STAL4855_06_GE_C02.indd 60 9/8/16 8:44 PM

2.3 / Random and Pseudorandom Numbers  61

numbers in the sequence and therefore unpredictable. However, as is discussed
shortly, true random numbers are not always used; rather, sequences of numbers
that appear to be random are generated by some algorithm. In this latter case,
care must be taken that an opponent not be able to predict future elements of the
sequence on the basis of earlier elements.

TRNGs, PRNGs, and PRFs

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called philosophical objections to such a practice, it generally works. That is,
under most circumstances, pseudorandom numbers will perform as well as if they
were random for a given use. The phrase “as well as” is unfortunately subjective, but
the use of pseudorandom numbers is widely accepted. The same principle applies
in statistical application, in which a statistician takes a sample of a population and
assumes that the results will be approximately the same as if the whole population
were measured.

Figure 2.6 contrasts a true random number generator (TRNG) with two
forms of pseudorandom number generators. A TRNG takes as input a source that
is effectively random; the source is often referred to as an entropy source. In es-
sence, the entropy source is drawn from the physical environment of the computer

Figure 2.6  Random and Pseudorandom Number Generators

Conversion
to binary

Source of
true

randomness

Random
bit stream

(a) TRNG

TRNG = true random number generator
PRNG = pseudorandom number generator
PRF = pseudorandom function

Deterministic
algorithm

Seed

Pseudorandom
bit stream

(b) PRNG

Deterministic
algorithm

Seed

Pseudorandom
value

(c) PRF

Context-
speci�c
values

M02_STAL4855_06_GE_C02.indd 61 9/8/16 8:44 PM

62   chapter 2 / Symmetric Encryption and Message Confidentiality

and could include things such as keystroke timing patterns, disk electrical activ-
ity, mouse movements, and instantaneous values of the system clock. The source,
or combination of sources, serves as input to an algorithm that produces random
binary output. The TRNG may simply involve conversion of an analog source to a
binary output. The TRNG may involve additional processing to overcome any bias
in the source.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces
a sequence of output bits using a deterministic algorithm. Typically, as shown in
Figure 2.6, there is some feedback path by which some of the results of the algo-
rithm are fed back as input as additional output bits are produced. The important
thing to note is that the output bit stream is determined solely by the input value or
values, so that an adversary who knows the algorithm and the seed can reproduce
the entire bit stream.

Figure 2.6 shows two different forms of PRNGs, based on application.

■■ Pseudorandom number generator: An algorithm that is used to produce an
open-ended sequence of bits is referred to as a PRNG. A common application
for an open-ended sequence of bits is as input to a symmetric stream cipher, as
discussed in the following section.

■■ Pseudorandom function (PRF): A PRF is used to produce a pseudorandom
string of bits of some fixed length. Examples are symmetric encryption keys
and nonces. Typically, the PRF takes as input a seed plus some context specific
values, such as a user ID or an application ID. A number of examples of PRFs
will be seen throughout this book.

Other than the number of bits produced, there is no difference between a
PRNG and a PRF. The same algorithms can be used in both applications. Both
require a seed and both must exhibit randomness and unpredictability. Furthermore,
a PRNG application may also employ context-specific input.

Algorithm Design

Cryptographic PRNGs have been the subject of much research over the years,
and a wide variety of algorithms have been developed. These fall roughly into two
categories:

■■ Purpose-built algorithms: These are algorithms designed specifically and
solely for the purpose of generating pseudorandom bit streams. Some of these
algorithms are used for a variety of PRNG applications; several of these are
described in the next section. Others are designed specifically for use in a
stream cipher. The most important example of the latter is RC4, described in
the next section.

■■ Algorithms based on existing cryptographic algorithms: Cryptographic algo-
rithms have the effect of randomizing input. Indeed, this is a requirement of
such algorithms. For example, if a symmetric block cipher produced ciphertext
that had certain regular patterns in it, it would aid in the process of crypt-
analysis. Thus, cryptographic algorithms can serve as the core of PRNGs. Three

M02_STAL4855_06_GE_C02.indd 62 9/8/16 8:44 PM

2.4 / Stream Ciphers and RC4  63

broad categories of cryptographic algorithms are commonly used to create
PRNGs:

—Symmetric block ciphers

—Asymmetric ciphers

—Hash functions and message authentication codes

Any of these approaches can yield a cryptographically strong PRNG.
A purpose-built algorithm may be provided by an operating system for general use.
For applications that already use certain cryptographic algorithms for encryption or
authentication, it makes sense to re-use the same code for the PRNG. Thus, all of
these approaches are in common use.

	 2.4	 Stream Ciphers and RC4

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements
continuously, producing output one element at a time as it goes along. Although
block ciphers are far more common, there are certain applications in which a stream
cipher is more appropriate. Examples are given subsequently in this book. In this
section, we look at perhaps the most popular symmetric stream cipher, RC4. We
begin with an overview of stream cipher structure, and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a
byte at a time. Figure 2.7 is a representative diagram of stream cipher structure.
In this structure, a key is input to a pseudorandom bit generator that produces a

Figure 2.7  Stream Cipher Diagram

Pseudorandom byte
generator

(key stream generator)

Plaintext
byte stream

M

Key
K

Key
K

k
Plaintext

byte stream
M

Ciphertext
byte stream

C

ENCRYPTION

Pseudorandom byte
generator

(key stream generator)

DECRYPTION

k

M02_STAL4855_06_GE_C02.indd 63 9/8/16 8:44 PM

64   chapter 2 / Symmetric Encryption and Message Confidentiality

stream of 8-bit numbers that are apparently random. The pseudorandom stream is
unpredictable without knowledge of the input key and has an apparently random
character. The output of the generator, called a keystream, is combined one byte at
a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation.
For example, if the next byte generated by the generator is 01101100 and the next
plaintext byte is 11001100, then the resulting ciphertext byte is

11001100 plaintext

⊕ 01101100 key stream

10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext

⊕ 01101100 key stream

11001100 plaintext

[KUMA97] lists the following important design considerations for a stream
cipher.

1.	 The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that
eventually repeats. The longer the period of repeat, the more difficult it will be
to do cryptanalysis.

2.	 The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately
equal number of 1s and 0s. If the keystream is treated as a stream of bytes,
then all of the 256 possible byte values should appear approximately equally
often. The more random-appearing the keystream is, the more randomized the
ciphertext is, making cryptanalysis more difficult.

3.	 Note from Figure 2.7 that the output of the pseudorandom number genera-
tor is conditioned on the value of the input key. To guard against brute-force
attacks, the key needs to be sufficiently long. The same considerations as apply
for block ciphers are valid here. Thus, with current technology, a key length of
at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as block cipher of comparable key length. A potential advantage
of a stream cipher is that stream ciphers that do not use block ciphers as a building
block are typically faster and use far less code than do block ciphers. The example
in this chapter, RC4, can be implemented in just a few lines of code. In recent years,
this advantage has diminished with the introduction of AES, which is quite efficient
in software. Furthermore, hardware acceleration techniques are now available for
AES. For example, the Intel AES Instruction Set has machine instructions for one
round of encryption and decryption and key generation. Using the hardware in-
structions results in speedups of about an order of magnitude compared to pure
software implementations [XU10].

M02_STAL4855_06_GE_C02.indd 64 9/8/16 8:44 PM

2.4 / Stream Ciphers and RC4  65

One advantage of a block cipher is that you can reuse keys. In contrast, if two
plaintexts are encrypted with the same key using a stream cipher, then cryptanalysis
is often quite simple [DAWS96]. If the two ciphertext streams are XORed together,
the result is the XOR of the original plaintexts. If the plaintexts are text strings,
credit card numbers, or other byte streams with known properties, then cryptanaly-
sis may be successful.

For applications that require encryption/decryption of a stream of data (such
as over a data-communications channel or a browser/Web link), a stream cipher
might be the better alternative. For applications that deal with blocks of data (such
as file transfer, e-mail, and database), block ciphers may be more appropriate.
However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is
a variable key-size stream cipher with byte-oriented operations. The algorithm
is based on the use of a random permutation. Analysis shows that the period of
the cipher is overwhelmingly likely to be greater than 10100 [ROBS95a]. Eight
to sixteen machine operations are required per output byte, and the cipher can
be expected to run very quickly in software. RC4 is used in the Secure Sockets
Layer/Transport Layer Security (SSL/TLS) standards that have been defined
for communication between Web browsers and servers. It is also used in the
Wired Equivalent Privacy (WEP) protocol and the newer WiFi Protected Access
(WPA) protocol that are part of the IEEE 802.11 wireless LAN standard. RC4
was kept as a trade secret by RSA Security. In September 1994, the RC4 algo-
rithm was anonymously posted on the Internet on the Cypherpunks anonymous
remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. A vari-
able-length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte
state vector S, with elements S[0], S[1], . . . , S[255]. At all times, S contains a per-
mutation of all 8-bit numbers from 0 through 255. For encryption and decryption,
a byte k (see Figure 2.7) is generated from S by selecting one of the 255 entries in a
systematic fashion. As each value of k is generated, the entries in S are once again
permuted.

Initialization of S  To begin, the entries of S are set equal to the values from 0
through 255 in ascending order; that is, S[0] = 0, S[1] = 1, c , S[255] = 255. A
temporary vector, T, is also created. If the length of the key K is 256 bytes, then
K is transferred to T. Otherwise, for a key of length keylen bytes, the first keylen
elements of T are copied from K, and then K is repeated as many times as necessary
to fill out T. These preliminary operations can be summarized as:

/* Initialization */
for i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

M02_STAL4855_06_GE_C02.indd 65 9/8/16 8:44 PM

66   chapter 2 / Symmetric Encryption and Message Confidentiality

Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255] and, for each S[i], swapping S[i] with another
byte in S according to a scheme dictated by T[i]:

/* Initial Permutation of S */
j = 0;
for i = 0 to 255 do
j = (j + S[i] + T[i]) mod 256;
Swap (S[i], S[j]);

Because the only operation on S is a swap, the only effect is a permutation.
S still contains all the numbers from 0 through 255.

Stream Generation  Once the S vector is initialized, the input key is no longer
used. Stream generation involves cycling through all the elements of S[i] and, for
each S[i], swapping S[i] with another byte in S according to a scheme dictated by the
current configuration of S. After S[255] is reached, the process continues, starting
over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)
i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap (S[i], S[j]);
t = (S[i] + S[j]) mod 256;
k = S[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.

Figure 2.8 illustrates the RC4 logic.

Strength of RC4  A number of papers have been published analyzing meth-
ods of attacking RC4 (e.g., [KNUD98], [FLUH00], [MANT01]). None of these
approaches is practical against RC4 with a reasonable key length, such as
128 bits. A more serious problem is reported in [FLUH01]. The authors dem-
onstrate that the WEP protocol, intended to provide confidentiality on 802.11
wireless LAN networks, is vulnerable to a particular attack approach. In essence,
the problem is not with RC4 itself but the way in which keys are generated for
use as input to RC4. This particular problem does not appear to be relevant to
other applications using RC4 and can be remedied in WEP by changing the way
in which keys are generated. This problem points out the difficulty in designing
a secure system that involves both cryptographic functions and protocols that
make use of them.

M02_STAL4855_06_GE_C02.indd 66 9/8/16 8:44 PM

2.4 / Stream Ciphers and RC4  67

25
5

25
4

25
3

4
3

2
1

0
S T S

(a
) I

ni
tia

l s
ta

te
 o

f
S

an
d

T

(b
) I

ni
tia

l p
er

m
ut

at
io

n
of

 S

Sw
ap

TK

T
[i] j =

 j
+

 S
[i]

 +
 T

[i]

t =
 S

[i]
 +

 S
[j]

S[
i]

S[
j]

ke
yl

en

i

S

(c
) S

tr
ea

m
 g

en
er

at
io

n

Sw
ap

j =
 j

+
 S

[i]

S[
i]

S[
j]

S[
t] k

i

F
ig

ur
e

2.
8 

R
C

4

M02_STAL4855_06_GE_C02.indd 67 9/8/16 8:44 PM

68   chapter 2 / Symmetric Encryption and Message Confidentiality

	 2.5	C ipher Block Modes of Operation

A symmetric block cipher processes one block of data at a time. In the case
of DES and 3DES, the block length is b = 64 bits; for AES, the block length is
b = 128 bits. For longer amounts of plaintext, it is necessary to break the plain-
text into b-bit blocks (padding the last block if necessary). To apply a block cipher
in a variety of applications, five modes of operation have been defined by NIST
(Special Publication 800-38A). The five modes are intended to cover virtually all
of the possible applications of encryption for which a block cipher could be used.
These modes are intended for use with any symmetric block cipher, including triple
DES and AES. The most important modes are described briefly in the remainder
of this section.

Electronic Codebook Mode

The simplest way to proceed is using what is known as electronic codebook (ECB)
mode, in which plaintext is handled b bits at a time and each block of plaintext is
encrypted using the same key. The term codebook is used because, for a given key,
there is a unique ciphertext for every b-bit block of plaintext. Therefore, one can
imagine a gigantic codebook in which there is an entry for every possible b-bit plain-
text pattern showing its corresponding ciphertext.

With ECB, if the same b-bit block of plaintext appears more than once in
the message, it always produces the same ciphertext. Because of this, for lengthy
messages, the ECB mode may not be secure. If the message is highly structured,
it may be possible for a cryptanalyst to exploit these regularities. For example,
if it is known that the message always starts out with certain predefined fields,
then the cryptanalyst may have a number of known plaintext–ciphertext pairs to
work with. If the message has repetitive elements with a period of repetition a
multiple of b bits, then these elements can be identified by the analyst. This may
help in the analysis or may provide an opportunity for substituting or rearranging
blocks.

To overcome the security deficiencies of ECB, we would like a technique in
which the same plaintext block, if repeated, produces different ciphertext blocks.

Cipher Block Chaining Mode

In the cipher block chaining (CBC) mode (Figure 2.9), the input to the encryption
algorithm is the XOR of the current plaintext block and the preceding ciphertext
block; the same key is used for each block. In effect, we have chained together the
processing of the sequence of plaintext blocks. The input to the encryption func-
tion for each plaintext block bears no fixed relationship to the plaintext block.
Therefore, repeating patterns of b bits are not exposed.

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

Cj = E(K, [Cj- 1 ⊕ Pj])

M02_STAL4855_06_GE_C02.indd 68 9/8/16 8:44 PM

2.5 / Cipher Block Modes of Operation  69

where E[K, X] is the encryption of plaintext X using key K, and ⊕ is the exclusive-
OR operation. Then

 D(K, Cj) = D(K, E(K, [Cj- 1 ⊕ Pj]))

 D(K, Cj) = Cj- 1 ⊕ Pj

 Cj- 1 ⊕ D(K, Cj) = Cj- 1 ⊕ Cj- 1 ⊕ Pj = Pj

which verifies Figure 2.9b.
To produce the first block of ciphertext, an initialization vector (IV) is XORed

with the first block of plaintext. On decryption, the IV is XORed with the output of
the decryption algorithm to recover the first block of plaintext.

The IV must be known to both the sender and receiver. For maximum secu-
rity, the IV should be protected as well as the key. This could be done by sending
the IV using ECB encryption. One reason for protecting the IV is as follows: If an
opponent is able to fool the receiver into using a different value for IV, then the
opponent is able to invert selected bits in the first block of plaintext. To see this,
consider the following:

 C1 = E(K, [IV ⊕ P1])

 P1 = IV ⊕ D(K, C1)

Figure 2.9  Cipher Block Chaining (CBC) Mode

C1

P1

Encrypt

IV

K

P2

C2

Encrypt

K

PN

CN

CN–1

Encrypt

K

(a) Encryption

P1

C1

Decrypt

IV

K

C2

P2

Decrypt

K

CN

PN

CN–1

Decrypt

K

(b) Decryption

M02_STAL4855_06_GE_C02.indd 69 9/8/16 8:44 PM

70   chapter 2 / Symmetric Encryption and Message Confidentiality

Now use the notation that X[j] denotes the jth bit of the b-bit quantity X. Then

P1[i] = IV[i] ⊕ D(K, C1)[i]

Then, using the properties of XOR, we can state

P1[i]′ = IV[i]′ ⊕ D(K, C1)[i]

where the prime notation denotes bit complementation. This means that if an
opponent can predictably change bits in IV, the corresponding bits of the received
value of P1 can be changed.

Cipher Feedback Mode

It is possible to convert any block cipher into a stream cipher by using the cipher
feedback (CFB) mode. A stream cipher eliminates the need to pad a message to be
an integral number of blocks. It also can operate in real time. Thus, if a character
stream is being transmitted, each character can be encrypted and transmitted im-
mediately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each char-
acter should be encrypted using 8 bits. If more than 8 bits are used, transmission
capacity is wasted.

Figure 2.10 depicts the CFB scheme. In the figure, it is assumed that the unit
of transmission is s bits; a common value is s = 8. As with CBC, the units of plain-
text are chained together, so that the ciphertext of any plaintext unit is a function of
all the preceding plaintext.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most
significant) s bits of the output of the encryption function are XORed with the first
unit of plaintext P1 to produce the first unit of ciphertext C1, which is then transmit-
ted. In addition, the contents of the shift register are shifted left by s bits, and C1
is placed in the rightmost (least significant) s bits of the shift register. This process
continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption function.
This is easily explained. Let Ss(X) be defined as the most significant s bits of X. Then

C1 = P1 ⊕ Ss[E(K, IV)]

Therefore,

P1 = C1 ⊕ Ss[E(K, IV)]

The same reasoning holds for subsequent steps in the process.

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applica-
tions to ATM (asynchronous transfer mode) network security and IPSec (IP security),
this mode was proposed early on (e.g., [DIFF79]).

M02_STAL4855_06_GE_C02.indd 70 9/8/16 8:44 PM

2.5 / Cipher Block Modes of Operation  71

Figure 2.11 depicts the CTR mode. A counter equal to the plaintext block
size is used. The only requirement stated in NIST Special Publication 800-38A is
that the counter value must be different for each plaintext block that is encrypted.
Typically, the counter is initialized to some value and then incremented by 1 for
each subsequent block (modulo 2b, where b is the block size). For encryption, the
counter is encrypted and then XORed with the plaintext block to produce the ci-
phertext block; there is no chaining. For decryption, the same sequence of counter
values is used, with each encrypted counter XORed with a ciphertext block to re-
cover the corresponding plaintext block.

Figure 2.10  s-bit Cipher Feedback (CFB) Mode

C1

IV

P1

Encrypt

Select
s bits

Discard
b–s bits

K

(a) Encryption

CN–1

(b) Decryption

s bits

s bits s bits

C2

P2

Encrypt

Select
s bits

Discard
b–s bits

K

s bits

s bitsb–s bits
Shift register

s bits

CN

PN

Encrypt

Select
s bits

Discard
b–s bits

K

s bits

s bitsb–s bits
Shift register

P1

IV

C1

Encrypt

Select
s bits

Discard
b–s bits

K

CN–1

s bits
C2

s bits
CN

s bits

s bits s bits

P2

Encrypt

Select
s bits

Discard
b–s bits

K
s bitsb–s bits

Shift register
s bitsb–s bits

Shift register

s bits

PN

Encrypt

Select
s bits

Discard
b–s bits

K

M02_STAL4855_06_GE_C02.indd 71 9/8/16 8:44 PM

72   chapter 2 / Symmetric Encryption and Message Confidentiality

[LIPM00] lists the following advantages of CTR mode.

■■ Hardware efficiency: Unlike the chaining modes, encryption (or decryption) in
CTR mode can be done in parallel on multiple blocks of plaintext or cipher-
text. For the chaining modes, the algorithm must complete the computation
on one block before beginning on the next block. This limits the maximum
throughput of the algorithm to the reciprocal of the time for one execution of
block encryption or decryption. In CTR mode, the throughput is only limited
by the amount of parallelism that is achieved.

■■ Software efficiency: Similarly, because of the opportunities for parallel execu-
tion in CTR mode, processors that support parallel features (such as aggres-
sive pipelining, multiple instruction dispatch per clock cycle, a large number of
registers, and SIMD instructions) can be effectively utilized.

Figure 2.11  Counter (CTR) Mode

(a) Encryption

P1

C1

Counter 1

Encrypt

K

Counter 2 Counter N

P2 PN

C2

Encrypt

K

CN

Encrypt

K

(b) Decryption

C1

P1

Counter 1

Encrypt

K

Counter 2 Counter N

C2 CN

P2

Encrypt

K

PN

Encrypt

K

M02_STAL4855_06_GE_C02.indd 72 9/8/16 8:44 PM

2.6 / Key Terms, Review Questions, and Problems  73

■■ Preprocessing: The execution of the underlying encryption algorithm does not
depend on input of the plaintext or ciphertext. Therefore, if sufficient memory
is available and security is maintained, preprocessing can be used to prepare
the output of the encryption boxes that feed into the XOR functions in Figure
2.11. When the plaintext or ciphertext input is presented, then the only compu-
tation is a series of XORs. Such a strategy greatly enhances throughput.

■■ Random access: The ith block of plaintext or ciphertext can be processed in
random-access fashion. With the chaining modes, block Ci cannot be com-
puted until the i - 1 prior block are computed. There may be applications in
which a ciphertext is stored, and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

■■ Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

■■ Simplicity: Unlike ECB and CBC modes, CTR mode requires only the im-
plementation of the encryption algorithm and not the decryption algorithm.
This matters most when the decryption algorithm differs substantially from
the encryption algorithm, as it does for AES. In addition, the decryption key
scheduling need not be implemented.

	 2.6	K ey Terms, Review Questions, and Problems

Review Questions
	 2.1	 What is symmetric encryption? What are the two requirements for secure use of

symmetric encryption?
	 2.2	 What is cryptanalysis? Summarize the various types of cryptanalytic attacks on

encrypted messages.
	 2.3	 List the parameters of a symmetric block cipher for greater security.
	 2.4	 What is a block cipher? Name the important symmetric block ciphers.
	 2.5	 Describe the data encryption algorithm for 64-bit length plaintext and 56-bit length key.
	 2.6	 Describe the encryption and decryption of triple DES.
	 2.7	 What are the advantages and disadvantages of triple DES?
	 2.8	 List the important design criteria for a stream cipher.

Key Terms

Advanced Encryption
Standard (AES)

block cipher
brute-force attack
cipher block chaining (CBC)

mode
cipher feedback (CFB) mode
ciphertext
counter mode (CTR)
cryptanalysis

cryptography
Data Encryption Standard

(DES)
decryption
electronic codebook (ECB)

mode
encryption
end-to-end encryption
Feistel cipher
key distribution

keystream
link encryption
plaintext
session key
stream cipher
subkey
symmetric encryption
triple DES (3DES)

M02_STAL4855_06_GE_C02.indd 73 9/8/16 8:44 PM

74   chapter 2 / Symmetric Encryption and Message Confidentiality

Problems
	 2.1	 This problem uses a real-world example of a symmetric cipher, from an old U.S.

Special Forces manual (public domain). The document, filename SpecialForces.pdf,
is available at box.com/NetSec6e.
a.	 Using the two keys (memory words) cryptographic and network security, encrypt

the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and
excess letters in the memory words and how to treat spaces and punctuation. Indi-
cate what your assumptions are. Note: The message is from the Sherlock Holmes
novel The Sign of Four.

b.	 Decrypt the ciphertext. Show your work.
c.	 Comment on when it would be appropriate to use this technique and what its

advantages are.
	 2.2	 Consider a very simple symmetric block encryption algorithm in which 64-bit blocks

of plaintext are encrypted using a 128-bit key. Encryption is defined as

C = (P ⊕ K1) Ä K0

		 where C = ciphertext, K = secret key, K0 = leftmost 64 bits of K, K1 = rightmost
64 bits of K, ⊕ = bitwise exclusive OR, and Ä is addition mod 264.
a.	 Show the decryption equation. That is, show the equation for P as a function of C,

K0, and K1.
b.	 Suppose an adversary has access to two sets of plaintexts and their corresponding

ciphertexts and wishes to determine K. We have the two equations:

	 C = (P ⊕ K1) Ä K0; C′ = (P′ ⊕ K1) Ä K0

First, derive an equation in one unknown (e.g., K0). Is it possible to proceed further
to solve for K0?

	 2.3	 Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using a
128-bit key. The plaintext is divided into two 32-bit blocks (L0, R0), and the key is
divided into four 32-bit blocks (K0, K1, K2, K3). Encryption involves repeated applica-
tion of a pair of rounds, defined as follows for rounds i and i + 1:

 Li = Ri- 1

 Ri = Li- 1 Ä F(Ri- 1, K0, K1, di)

 Li+ 1 = Ri

 Ri+ 1 = Li Ä F(Ri, K2, K3, di+ 1)

		 where F is defined as

	 F(M, Kj, Kk, di) = ((M 6 6 4) Ä Kj) ⊕ ((M W 5) Ä Kk) ⊕ (M Ä di)	

		 and where the logical shift of x by y bits is denoted by x 6 6 y, the logical right shift
of x by y bits is denoted by x W y, and di is a sequence of predetermined constants.
a.	 Comment on the significance and benefit of using the sequence of constants.
b.	 Illustrate the operation of TEA using a block diagram or flow chart type of

depiction.

M02_STAL4855_06_GE_C02.indd 74 9/8/16 8:44 PM

http://box.com/NetSec6e

2.6 / Key Terms, Review Questions, and Problems  75

c.	 If only one pair of rounds is used, then the ciphertext consists of the 64-bit block
(L2, R2). For this case, express the decryption algorithm in terms of equations.

d.	 Repeat part (c) using an illustration similar to that used for part (b).
	 2.4	 Is the DES decryption the inverse of DES encryption? Justify your answer.
	 2.5	 Consider a Feistel cipher composed of 14 rounds with block length 128 bits and key

length 128 bits. Suppose that, for a given k, the key scheduling algorithm determines
values for the first seven round keys, k1, k2, c , k8, and then sets

	 k8 = k7, k9 = k6, k10 = k5, c , k14 = k1	

		 Suppose you have a ciphertext c. Explain how, with access to an encryption oracle,
you can decrypt c and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you, and you cannot break
open the device. You can only gain information from the oracle by making queries to
it and observing its responses.)

	 2.6	 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To
see this, suppose that we have a linear block cipher EL that encrypts 256-bit blocks
of plaintext into 256-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a
256-bit message m under a key k (the actual bit length of k is irrelevant). Thus,

	 EL(k, [m1 ⊕ m2]) = EL(k, m1) ⊕ EL(k, m2) for all 256@bit patterns m1, m2	

		 Describe how, with 256 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 256 plaintext–ciphertext pairs to work with, and you have the ability to choose
the value of the ciphertexts.)

	 2.7	 Suppose you have a true random bit generator where each bit in the generated stream
has the same probability of being a 0 or 1 as any other bit in the stream and that the
bits are not correlated; that is, the bits are generated from identical independent dis-
tribution. However, the bit stream is biased. The probability of a 1 is 0.5 - d and the
probability of a 0 is 0.5 + d where 0 6 d 6 0.5. A simple deskewing algorithm is as
follows: Examine the bit stream as a sequence of nonoverlapping pairs. Discard all 00
and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.
a.	 What is the probability of occurrence of each pair in the original sequence?
b.	 What is the probability of occurrence of 0 and 1 in the modified sequence?
c.	 What is the expected number of input bits to produce x output bits?
d.	 Suppose that the algorithm uses overlapping successive bit pairs instead of non-

overlapping successive bit pairs. That is, the first output bit is based on input bits 1
and 2, the second output bit is based on input bits 2 and 3, and so on. What can you
say about the output bit stream?

	 2.8	 Another approach to deskewing is to consider the bit stream as a sequence of non-
overlapping groups of n bits each and output the parity of each group. That is, if a
group contains an odd number of ones, the output is 1; otherwise the output is 0.
a.	 Express this operation in terms of a basic Boolean function.
b.	 Assume, as in the Problem 2.7, that the probability of a 1 is 0.5 - d. If each group

consists of 2 bits, what is the probability of an output of 1?
c.	 If each group consists of 3 bits, what is the probability of an output of 1?
d.	 Generalize the result to find the probability of an output of 1 for input groups of

n bits.

M02_STAL4855_06_GE_C02.indd 75 9/8/16 8:44 PM

76   chapter 2 / Symmetric Encryption and Message Confidentiality

	 2.9	 Is it appropriate to reuse keys in RC4? Why or why not?
	 2.10	 RC4 has a secret internal state which is a permutation of all the possible values of the

vector S and the two indices i and j.
a.	 Using a straightforward scheme to store the internal state, how many bits are used?
b.	 Suppose we think of it from the point of view of how much information is repre-

sented by the state. In that case, we need to determine how many different states
there are, then take the log to the base 2 to find out how many bits of information
this represents. Using this approach, how many bits would be needed to represent
the state?

	 2.11	 Alice and Bob agree to communicate privately via e-mail using a scheme based on
RC4, but they want to avoid using a new secret key for each transmission. Alice and
Bob privately agree on a 128-bit key k. To encrypt a message m consisting of a string
of bits, the following procedure is used.
1.	 Choose a random 80-bit value v
2.	 Generate the ciphertext c = RC4(v }k) ⊕ m
3.	 Send the bit string (v } c)

			 a.	 Suppose Alice uses this procedure to send a message m to Bob. Describe how
Bob can recover the message m from (v } c) using k.

			 b.	 If an adversary observes several values (v1 } c1), (v2 } c2), c transmitted
between Alice and Bob, how can he or she determine when the same key
stream has been used to encrypt two messages?

	 2.12	 With the ECB mode, if there is an error in a block of the transmitted ciphertext,
only the corresponding plaintext block is affected. However, in the CBC mode, this
error propagates. For example, an error in the transmitted C1 (Figure 2.9) obviously
corrupts P1 and P2.
a.	 Are any blocks beyond P2 affected?
b.	 Suppose that there is a bit error in the source version of P1. Through how many

ciphertext blocks is this error propagated? What is the effect at the receiver?
	 2.13	 Is it possible to perform decryption operations in parallel on multiple blocks of

ciphertext in CBC mode? How about encryption?
	 2.14	 Why should the IV in CBC be protected?
	 2.15	 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it

could be used in any block cipher. CBC-Pad handles plaintext of any length. The
ciphertext is longer than the plaintext by at most the size of a single block. Padding is
used to assure that the plaintext input is a multiple of the block length. It is assumed
that the original plaintext is an integer number of bytes. This plaintext is padded at
the end by from 1 to bb bytes, where bb equals the block size in bytes. The pad bytes
are all the same and set to a byte that represents the number of bytes of padding. For
example, if there are 8 bytes of padding, each byte has the bit pattern 00001000.
Why not allow zero bytes of padding? That is, if the original plaintext is an integer
multiple of the block size, why not refrain from padding?

	 2.16	 Padding may not always be appropriate. For example, one might wish to store the
encrypted data in the same memory buffer that originally contained the plaintext. In
that case, the ciphertext must be the same length as the original plaintext. A mode for
that purpose is the ciphertext stealing (CTS) mode. Figure 2.12a shows an implemen-
tation of this mode.
a.	 Explain how it works.
b.	 Describe how to decrypt Cn - 1 and Cn.

M02_STAL4855_06_GE_C02.indd 76 9/8/16 8:44 PM

2.6 / Key Terms, Review Questions, and Problems  77

Figure 2.12  Block Cipher Modes for Plaintext not a Multiple of Block Size

IV P1

C1

K K K K

+ + + +

PN–2

CN–2

CN–3

Encrypt Encrypt Encrypt Encrypt

Encrypt Encrypt

(a) Ciphertext stealing mode

(b) Alternative method

Encrypt

CN X

PN–1

CN–1

PN 00…0

IV
P1

(bb bits)

C1
(bb bits)

K K K K

+ + + +

PN–2
(bb bits)

CN–2
(bb bits)

CN–3

Select
leftmost

j bits

PN–1
(bb bits)

CN–1
(bb bits)

PN
(j bits)

CN
(j bits)

Encrypt

	 2.17	 Figure 2.12b shows an alternative to CTS for producing ciphertext of equal length to
the plaintext when the plaintext is not an integer multiple of the block size.
a.	 Explain the algorithm.
b.	 Explain why CTS is preferable to this approach illustrated in Figure 2.12b.

	 2.18	 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?

M02_STAL4855_06_GE_C02.indd 77 9/8/16 8:44 PM

7878

Public-Key Cryptography and
Message Authentication

Chapter

3.1	 Approaches to Message Authentication

Authentication Using Conventional Encryption
Message Authentication without Message Encryption

3.2	 Secure Hash Functions

Hash Function Requirements
Security of Hash Functions
Simple Hash Functions
The SHA Secure Hash Function
SHA-3

3.3	 Message Authentication Codes

HMAC
MACs Based on Block Ciphers

3.4	 Public-Key Cryptography Principles

Public-Key Encryption Structure
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography

3.5	 Public-Key Cryptography Algorithms

The RSA Public-Key Encryption Algorithm
Diffie–Hellman Key Exchange
Other Public-Key Cryptography Algorithms

3.6	 Digital Signatures

Digital Signature Generation and Verification
RSA Digital Signature Algorithm

3.7	 Key Terms, Review Questions, and Problems

M03_STAL4855_06_GE_C03.indd 78 8/29/16 6:20 PM

3.1 / Approaches to Message Authentication  79

In addition to message confidentiality, message authentication is an important network
security function. This chapter examines three aspects of message authentication. First,
we look at the use of message authentication codes and hash functions to provide mes-
sage authentication. Then we look at public-key encryption principles and two specific
public-key algorithms. These algorithms are useful in the exchange of conventional
encryption keys. Then we look at the use of public-key encryption to produce digital
signatures, which provides an enhanced form of message authentication.

	 3.1	 Approaches to Message Authentication

Encryption protects against passive attack (eavesdropping). A different require-
ment is to protect against active attack (falsification of data and transactions).
Protection against such attacks is known as message authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and comes from its alleged source. Message authentication is a
procedure that allows communicating parties to verify that received messages are
authentic.1 The two important aspects are to verify that the contents of the mes-
sage have not been altered and that the source is authentic. We may also wish to
verify a message’s timeliness (it has not been artificially delayed and replayed) and
sequence relative to other messages flowing between two parties. All of these con-
cerns come under the category of data integrity as described in Chapter 1.

1For simplicity, for the remainder of this chapter, we refer to message authentication. By this we mean
both authentication of transmitted messages and of stored data (data authentication).

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Define the term message authentication code.

◆◆ List and explain the requirements for a message authentication code.

◆◆ Explain why a hash function used for message authentication needs to be
secured.

◆◆ Understand the differences among preimage resistant, second preimage
resistant, and collision resistant properties.

◆◆ Understand the operation of SHA-512.

◆◆ Present an overview of HMAC.

◆◆ Present an overview of the basic principles of public-key cryptosystems.

◆◆ Explain the two distinct uses of public-key cryptosystems.

◆◆ Present an overview of the RSA algorithm.

◆◆ Define Diffie–Hellman key exchange.

◆◆ Understand the man-in-the-middle attack.

M03_STAL4855_06_GE_C03.indd 79 8/29/16 6:20 PM

80   chapter 3 / Public-Key Cryptography and Message Authentication

Authentication Using Conventional Encryption

It would seem possible to perform authentication simply by the use of symmetric
encryption. If we assume that only the sender and receiver share a key (which is as it
should be), then only the genuine sender would be able to encrypt a message success-
fully for the other participant, provided the receiver can recognize a valid message.
Furthermore, if the message includes an error-detection code and a sequence num-
ber, the receiver is assured that no alterations have been made and that sequencing
is proper. If the message also includes a timestamp, the receiver is assured that the
message has not been delayed beyond that normally expected for network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentica-
tion. To give one simple example, in the ECB mode of encryption, if an attacker
reorders the blocks of ciphertext, then each block will still decrypt successfully.
However, the reordering may alter the meaning of the overall data sequence.
Although sequence numbers may be used at some level (e.g., each IP packet), it is
typically not the case that a separate sequence number will be associated with each
b-bit block of plaintext. Thus, block reordering is a threat.

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on encryption. In all of these approaches, an authentication tag is generated
and appended to each message for transmission. The message itself is not encrypted
and can be read at the destination independent of the authentication function at the
destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to
combine authentication and confidentiality in a single algorithm by encrypting a
message plus its authentication tag. Typically, however, message authentication is
provided as a separate function from message encryption. [DAVI89] suggests three
situations in which message authentication without confidentiality is preferable:

1.	 There are a number of applications in which the same message is broadcast to
a number of destinations. Two examples are notification to users that the net-
work is now unavailable and an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring au-
thenticity. Thus, the message must be broadcast in plaintext with an associated
message authentication tag. The responsible system performs authentication. If
a violation occurs, the other destination systems are alerted by a general alarm.

2.	 Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is car-
ried out on a selective basis with messages being chosen at random for checking.

3.	 Authentication of a computer program in plaintext is an attractive service.
The computer program can be executed without having to decrypt it every
time, which would be wasteful of processor resources. However, if a message
authentication tag were attached to the program, it could be checked when-
ever assurance is required of the integrity of the program.

M03_STAL4855_06_GE_C03.indd 80 8/29/16 6:20 PM

3.1 / Approaches to Message Authentication  81

Thus, there is a place for both authentication and encryption in meeting secu-
rity requirements.

Message Authentication Code  One authentication technique involves the use of
a secret key to generate a small block of data, known as a message authentication
code (MAC), that is appended to the message. This technique assumes that two
communicating parties, say A and B, share a common secret key KAB. When A
has a message to send to B, it calculates the message authentication code as a func-
tion of the message and the key: MACM = F(KAB, M). The message plus code are
transmitted to the intended recipient. The recipient performs the same calcula-
tion on the received message, using the same secret key, to generate a new mes-
sage authentication code. The received code is compared to the calculated code
(Figure 3.1). If we assume that only the receiver and the sender know the identity
of the secret key, and if the received code matches the calculated code, then the fol-
lowing statements apply:

1.	 The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calcula-
tion of the code will differ from the received code. Because the attacker is
assumed not to know the secret key, the attacker cannot alter the code to cor-
respond to the alterations in the message.

Figure 3.1  Message Authentication Using a Message Authentication Code

MAC
algorithm

MAC
algorithm

MAC

K

K

Compare

Message

Transmit

M03_STAL4855_06_GE_C03.indd 81 8/29/16 6:20 PM

82   chapter 3 / Public-Key Cryptography and Message Authentication

2.	 The receiver is assured that the message is from the alleged sender. Because
no one else knows the secret key, no one else could prepare a message with a
proper code.

3.	 If the message includes a sequence number (such as is used with HDLC and
TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The NIST speci-
fication, FIPS PUB 113, recommends the use of DES. DES is used to generate an
encrypted version of the message, and the last number of bits of ciphertext are used
as the code. A 16- or 32-bit code is typical.

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. Because
of the mathematical properties of the authentication function, it is less vulnerable to
being broken than encryption.

One-Way Hash Function  An alternative to the message authentication code is
the one-way hash function. As with the message authentication code, a hash func-
tion accepts a variable-size message M as input and produces a fixed-size message
digest H(M) as output. Unlike the MAC, a hash function does not take a secret key
as input. To authenticate a message, the message digest is sent with the message in
such a way that the message digest is authentic.

Figure 3.2 illustrates three ways in which the message can be authenticated.
The message digest can be encrypted using conventional encryption (part a);
if it is assumed that only the sender and receiver share the encryption key, then
authenticity is assured. The message digest can be encrypted using public-key
encryption (part b); this is explained in Section 3.5. The public-key approach has
two advantages: (1) It provides a digital signature as well as message authentication.
(2) It does not require the distribution of keys to communicating parties.

These two approaches also have an advantage over approaches that encrypt
the entire message in that less computation is required. Nevertheless, there has
been interest in developing a technique that avoids encryption altogether. Several
reasons for this interest are pointed out in [TSUD92]:

■■ Encryption software is quite slow. Even though the amount of data to be en-
crypted per message is small, there may be a steady stream of messages into
and out of a system.

■■ Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES are available, but the cost adds up if all nodes in a network must have
this capability.

■■ Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

■■ An encryption algorithm may be protected by a patent.

Figure 3.2c shows a technique that uses a hash function but no encryption
for message authentication. This technique assumes that two communicating
parties, say A and B, share a common secret value SAB. When A has a message to
send to B, it calculates the hash function over the concatenation of the secret value

M03_STAL4855_06_GE_C03.indd 82 8/29/16 6:20 PM

3.1 / Approaches to Message Authentication  83

and the message: MDM = H(SAB }M).2 It then sends [M }MDM] to B. Because B
possesses SAB, it can recompute H(SAB }M) and verify MDM. Because the secret
value itself is not sent, it is not possible for an attacker to modify an intercepted
message. As long as the secret value remains secret, it is also not possible for an at-
tacker to generate a false message.

2} denotes concatenation.

Figure 3.2  Message Authentication Using a One-Way Hash Function

Source A Destination B

M
es

sa
ge

M
es

sa
ge

Compare

M
es

sa
ge

H

H

E

(a) Using conventional encryption

K

D

K

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Compare

M
es

sa
ge

H

H

H

E

S S

(b) Using public-key encryption

(c) Using secret value

PRa PUa

Compare

H

D

M
es

sa
ge

M
es

sa
ge

M03_STAL4855_06_GE_C03.indd 83 8/29/16 6:20 PM

84   chapter 3 / Public-Key Cryptography and Message Authentication

A variation on the third technique, called HMAC, is the one adopted
for IP security (described in Chapter 9); it also has been specified for SNMPv3
(Chapter 13).

	 3.2	S ecure Hash Functions

The one-way hash function, or secure hash function, is important not only in mes-
sage authentication but in digital signatures. In this section, we begin with a discus-
sion of requirements for a secure hash function. Then we look at the most important
hash function, SHA.

Hash Function Requirements

The purpose of a hash function is to produce a “fingerprint” of a file, message, or
other block of data. To be useful for message authentication, a hash function H
must have the following properties:

1.	 H can be applied to a block of data of any size.

2.	 H produces a fixed-length output.

3.	 H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

4.	 For any given code h, it is computationally infeasible to find x such that
H(x) = h. A hash function with this property is referred to as one-way or
preimage resistant.3

5.	 For any given block x, it is computationally infeasible to find y ≠ x with
H(y) = H(x). A hash function with this property is referred to as second
pre-image resistant. This is sometimes referred to as weak collision resistant.

6.	 It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a
hash function to message authentication. The fourth property, preimage resistant,
is the “one-way” property: It is easy to generate a code given a message, but virtu-
ally impossible to generate a message given a code. This property is important if the
authentication technique involves the use of a secret value (Figure 3.2c). The secret
value itself is not sent; however, if the hash function is not one way, an attacker can
easily discover the secret value: If the attacker can observe or intercept a transmis-
sion, the attacker obtains the message M and the hash code C = H(SAB }M). The
attacker then inverts the hash function to obtain SAB }M = H-1(C). Because the
attacker now has both M and SAB }M, it is a trivial matter to recover SAB.

The second preimage resistant property guarantees that it is impossible to find
an alternative message with the same hash value as a given message. This prevents

3For f(x) = y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage
values for a given y.

M03_STAL4855_06_GE_C03.indd 84 8/29/16 6:20 PM

3.2 / Secure Hash Functions  85

forgery when an encrypted hash code is used (Figures 3.2a and b). If this prop-
erty were not true, an attacker would be capable of the following sequence: First,
observe or intercept a message plus its encrypted hash code; second, generate an
unencrypted hash code from the message; third, generate an alternate message with
the same hash code.

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it is
referred to as a strong hash function. The sixth property, collision resistant, protects
against a sophisticated class of attack known as the birthday attack. Details of this
attack are beyond the scope of this book. The attack reduces the strength of an
m-bit hash function from 2m to 2m/2. See [STAL13] for details.

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

Security of Hash Functions

As with symmetric encryption, there are two approaches to attacking a secure hash
function: cryptanalysis and brute-force attack. As with symmetric encryption algo-
rithms, cryptanalysis of a hash function involves exploiting logical weaknesses in the
algorithm.

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length n,
the level of effort required is proportional to the following:

Preimage resistant 2n

Second preimage resistant 2n

Collision resistant 2n/2

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2n/2 determines the strength of the hash code
against brute-force attacks. Van Oorschot and Wiener [VANO94] presented a de-
sign for a $10 million collision search machine for MD5, which has a 128-bit hash
length, that could find a collision in 24 days. Thus, a 128-bit code may be viewed as
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a
160-bit hash length. With a hash length of 160 bits, the same search machine would
require over four thousand years to find a collision. With today’s technology, the
time would be much shorter, so that 160 bits now appears suspect.

Simple Hash Functions

All hash functions operate using the following general principles. The input (mes-
sage, file, etc.) is viewed as a sequence of n-bit blocks. The input is processed one
block at a time in an iterative fashion to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of
every block. This can be expressed as

Ci = bi1 ⊕ bi2 ⊕ g ⊕ bim

M03_STAL4855_06_GE_C03.indd 85 8/29/16 6:20 PM

86   chapter 3 / Public-Key Cryptography and Message Authentication

where

Ci = ith bit of the hash code, 1 … i … n

m = number of n-bit blocks in the input

bij = ith bit in jth block
⊕ = XOR operation

Figure 3.3 illustrates this operation; it produces a simple parity for each bit
position and is known as a longitudinal redundancy check. It is reasonably effective
for random data as a data integrity check. Each n-bit hash value is equally likely.
Thus, the probability that a data error will result in an unchanged hash value is 2-n.
With more predictably formatted data, the function is less effective. For example, in
most normal text files, the high-order bit of each octet is always zero. So if a 128-bit
hash value is used, instead of an effectiveness of 2-128, the hash function on this type
of data has an effectiveness of 2-112.

A simple way to improve matters is to perform a 1-bit circular shift, or rotation,
on the hash value after each block is processed. The procedure can be summarized as

1.	 Initially set the n-bit hash value to zero.

2.	 Process each successive n-bit block of data:

a.	 Rotate the current hash value to the left by one bit.
b.	 XOR the block into the hash value.

This has the effect of “randomizing” the input more completely and overcoming
any regularities that appear in the input.

Although the second procedure provides a good measure of data integrity,
it is virtually useless for data security when an encrypted hash code is used with a
plaintext message, as in Figures 3.2a and b. Given a message, it is an easy matter to
produce a new message that yields that hash code: Simply prepare the desired alter-
nate message and then append an n-bit block that forces the combined new message
plus block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the
hash code is encrypted, you may still feel that such a simple function could be useful
when the message as well as the hash code are encrypted. But one must be care-
ful. A technique originally proposed by the National Bureau of Standards used

Figure 3.3  Simple Hash Function Using Bitwise XOR

bit 1

Block 1

Block 2

Block m

Hash code

b11 b21 bn1

bn2

bnm

b22

b2m

b12

b1m

C1 C2 Cn

bit 2 bit n

M03_STAL4855_06_GE_C03.indd 86 8/29/16 6:20 PM

3.2 / Secure Hash Functions  87

the simple XOR applied to 64-bit blocks of the message and then an encryption
of the entire message using the cipher block chaining (CBC) mode. We can define
the scheme as follows: Given a message consisting of a sequence of 64-bit blocks
X1, X2, c , XN, define the hash code C as the block-by-block XOR or all blocks
and append the hash code as the final block:

C = XN + 1 = X1 ⊕ X2 ⊕ g ⊕ XN

Next, encrypt the entire message plus hash code using CBC mode to produce the
encrypted message Y1, Y2, c , YN + 1. [JUEN85] points out several ways in which
the ciphertext of this message can be manipulated in such a way that it is not detect-
able by the hash code. For example, by the definition of CBC (Figure 2.9), we have

 X1 = IV ⊕ D(K, Y1)

 Xi = Yi- 1 ⊕ D(K, Yi)

 XN + 1 = YN ⊕ D(K, YN + 1)

But XN + 1 is the hash code:

 XN + 1 = X1 ⊕ X2 ⊕ g ⊕ XN

 = [IV ⊕ D(K, Y1)] ⊕ [Y1 ⊕ D(K, Y2)] ⊕ g ⊕ [YN - 1 ⊕ D(K, YN)]

Because the terms in the preceding equation can be XORed in any order, it follows
that the hash code would not change if the ciphertext blocks were permuted.

The SHA Secure Hash Function

In recent years, the most widely used hash function has been the Secure Hash
Algorithm (SHA). Indeed, because virtually every other widely used hash function
had been found to have substantial cryptanalytic weaknesses, SHA was more or
less the last remaining standardized hash algorithm by 2005. SHA was developed
by the National Institute of Standards and Technology (NIST) and published as a
federal information processing standard (FIPS 180) in 1993. When weaknesses were
discovered in SHA (now known as SHA-0), a revised version was issued as FIPS
180-1 in 1995 and is referred to as SHA-1. The actual standards document is entitled
“Secure Hash Standard.” SHA is based on the hash function MD4, and its design
closely models MD4.

SHA-1 produces a hash value of 160 bits. In 2002, NIST produced a revised
version of the standard, FIPS 180-2, that defined three new versions of SHA with
hash value lengths of 256, 384, and 512 bits known as SHA-256, SHA-384, and
SHA-512, respectively. Collectively, these hash algorithms are known as SHA-2.
These new versions have the same underlying structure and use the same types of
modular arithmetic and logical binary operations as SHA-1. A revised document
was issued as FIP PUB 180-3 in 2008, which added a 224-bit version (Table 3.1).
SHA-1 and SHA-2 are also specified in RFC 6234, which essentially duplicates the
material in FIPS 180-3 but adds a C code implementation.

In 2005, NIST announced the intention to phase out approval of SHA-1 and
move to a reliance on SHA-2 by 2010. Shortly thereafter, a research team described
an attack in which two separate messages could be found that deliver the same
SHA-1 hash using 269 operations, far fewer than the 280 operations previously

M03_STAL4855_06_GE_C03.indd 87 8/29/16 6:20 PM

88   chapter 3 / Public-Key Cryptography and Message Authentication

thought needed to find a collision with an SHA-1 hash [WANG05]. This result
should hasten the transition to SHA-2.

In this section, we provide a description of SHA-512. The other versions are
quite similar.

The algorithm takes as input a message with a maximum length of less than
2128 bits and produces as output a 512-bit message digest. The input is processed in
1024-bit blocks. Figure 3.4 depicts the overall processing of a message to produce a
digest. The processing consists of the following steps.

Step 1	 Append padding bits: The message is padded so that its length is congruent
to 896 modulo 1024 [length K 896 (mod 1024)]. Padding is always added,
even if the message is already of the desired length. Thus, the number of
padding bits is in the range of 1 to 1024. The padding consists of a single 1
bit followed by the necessary number of 0 bits.

Step 2	 Append length: A block of 128 bits is appended to the message. This block
is treated as an unsigned 128-bit integer (most significant byte first) and
contains the length of the original message (before the padding).

The outcome of the first two steps yields a message that is an integer
multiple of 1024 bits in length. In Figure 3.4, the expanded message is repre-
sented as the sequence of 1024-bit blocks M1, M2, c , MN, so that the total
length of the expanded message is N * 1024 bits.

Step 3	 Initialize hash buffer: A 512-bit buffer is used to hold intermediate and final
results of the hash function. The buffer can be represented as eight 64-bit
registers (a, b, c, d, e, f, g, h). These registers are initialized to the following
64-bit integers (hexadecimal values):

a = 6A09E667F3BCC908   e = 510E527FADE682D1
b = BB67AE8584CAA73B    f = 9B05688C2B3E6C1F
c = 3C6EF372FE94F82B       g = 1F83D9ABFB41BD6B
d = A54FF53A5F1D36F1      h = 5BE0CD19137E2179

These values are stored in big-endian format, which is the most significant byte of
a word in the low-address (leftmost) byte position. These words were obtained by
taking the first sixty-four bits of the fractional parts of the square roots of the first
eight prime numbers.

SHA-1 SHA-224 SHA-256 SHA-384 SHA-512

Message Digest Size 160 224 256 384 512

Message Size 6264 6264 6264 62128 62128

Block Size 512 512 512 1024 1024

Word Size 32 32 32 64 64

Number of Steps 80 64 64 80 80

Note: All sizes are measured in bits.

Table 3.1  Comparison of SHA Parameters

M03_STAL4855_06_GE_C03.indd 88 8/29/16 6:20 PM

3.2 / Secure Hash Functions  89

Step 4	 Process message in 1024-bit (128-word) blocks: The heart of the algorithm
is a module that consists of 80 rounds; this module is labeled F in Figure 3.4.
The logic is illustrated in Figure 3.5.

Each round takes as input the 512-bit buffer value abcdefgh and
updates the contents of the buffer. At input to the first round, the buffer
has the value of the intermediate hash value, Hi- 1. Each round t makes
use of a 64-bit value Wt derived from the current 1024-bit block being pro-
cessed (Mi). Each round also makes use of an additive constant Kt, where
0 … t … 79 indicates one of the 80 rounds. These words represent the first
64 bits of the fractional parts of the cube roots of the first 80 prime numbers.
The constants provide a “randomized” set of 64-bit patterns, which should
eliminate any regularities in the input data.

The output of the 80th round is added to the input to the first round
(Hi- 1) to produce Hi. The addition is done independently for each of the
eight words in the buffer with each of the corresponding words in Hi- 1,
using addition modulo 264.

Step 5	 Output: After all N 1024-bit blocks have been processed, the output from
the Nth stage is the 512-bit message digest.

Figure 3.4  Message Digest Generation Using SHA-512

N × 1024 bits

M1 M2

H2

MN

Message

hash code

1024 bits 1024 bits 1024 bits

L bits

L

128 bits

512 bits 512 bits 512 bits

1000000..0

+ = word-by-word addition mod 264

H1

F

+

IV = H0

F

+

F

+

HN

M03_STAL4855_06_GE_C03.indd 89 8/29/16 6:20 PM

90   chapter 3 / Public-Key Cryptography and Message Authentication

The SHA-512 algorithm has the property that every bit of the hash code is
a function of every bit of the input. The complex repetition of the basic function
F produces results that are well mixed; that is, it is unlikely that two messages cho-
sen at random, even if they exhibit similar regularities, will have the same hash
code. Unless there is some hidden weakness in SHA-512, which has not so far been
published, the difficulty of coming up with two messages having the same message
digest is on the order of 2256 operations, while the difficulty of finding a message
with a given digest is on the order of 2512 operations.

SHA-3

SHA-2, particularly the 512-bit version, would appear to provide unassailable secu-
rity. However, SHA-2 shares the same structure and mathematical operations as its
predecessors, and this is a cause for concern. Because it would take years to find a
suitable replacement for SHA-2, should it become vulnerable, NIST announced in
2007 a competition to produce the next-generation NIST hash function, which is to
be called SHA-3. Following are the basic requirements that must be satisfied by any
candidate for SHA-3:

Figure 3.5  SHA-512 Processing of a Single 1024-Bit Block

64

Mi

Wt

Hi

Hi–1

W0

W79

Kt

K0

K79

a b c

Round 0

d e f g h

a b c

Round t

d e f g h

Message
schedule

a b c

Round 79

d e f g h

+ + + + + + + +

M03_STAL4855_06_GE_C03.indd 90 8/29/16 6:20 PM

3.3 / Message Authentication Codes  91

1.	 It must be possible to replace SHA-2 with SHA-3 in any application by a sim-
ple drop-in substitution. Therefore, SHA-3 must support hash value lengths
of 224, 256, 384, and 512 bits.

2.	 SHA-3 must preserve the online nature of SHA-2. That is, the algorithm must
process comparatively small blocks (512 or 1024 bits) at a time instead of
requiring that the entire message be buffered in memory before processing it.

In 2012, NIST selected a winning submission and formally published SHA-3.
A detailed presentation of SHA-3 is provided in Chapter 15.

	 3.3	 Message Authentication Codes

HMAC

In recent years, there has been increased interest in developing a MAC derived
from a cryptographic hash code, such as SHA-1. The motivations for this interest
are as follows:

■■ Cryptographic hash functions generally execute faster in software than con-
ventional encryption algorithms such as DES.

■■ Library code for cryptographic hash functions is widely available.

A hash function such as SHA-1 was not designed for use as a MAC and cannot
be used directly for that purpose because it does not rely on a secret key. There have
been a number of proposals for the incorporation of a secret key into an existing hash
algorithm. The approach that has received the most support is HMAC [BELL96a,
BELL96b]. HMAC has been issued as RFC 2104, has been chosen as the mandatory-
to-implement MAC for IP Security, and is used in other Internet protocols, such as
Transport Layer Security (TLS) and Secure Electronic Transaction (SET).

HMAC Design Objectives  RFC 2104 lists the following design objectives for HMAC.

■■ To use, without modifications, available hash functions. In particular, hash
functions that perform well in software, and for which code is freely and
widely available

■■ To allow for easy replaceability of the embedded hash function in case faster
or more secure hash functions are found or required

■■ To preserve the original performance of the hash function without incurring
a significant degradation

■■ To use and handle keys in a simple way

■■ To have a well-understood cryptographic analysis of the strength of the au-
thentication mechanism based on reasonable assumptions on the embedded
hash function

The first two objectives are important to the acceptability of HMAC. HMAC
treats the hash function as a “black box.” This has two benefits. First, an existing
implementation of a hash function can be used as a module in implementing HMAC.

M03_STAL4855_06_GE_C03.indd 91 8/29/16 6:20 PM

92   chapter 3 / Public-Key Cryptography and Message Authentication

In this way, the bulk of the HMAC code is prepackaged and ready to use without
modification. Second, if it is ever desired to replace a given hash function in an
HMAC implementation, all that is required is to remove the existing hash function
module and drop in the new module. This could be done if a faster hash function
were desired. More important, if the security of the embedded hash function were
compromised, the security of HMAC could be retained simply by replacing the
embedded hash function with a more secure one.

The last design objective in the preceding list is, in fact, the main advantage
of HMAC over other proposed hash-based schemes. HMAC can be proven secure
provided that the embedded hash function has some reasonable cryptographic
strengths. We return to this point later in this section, but first we examine the struc-
ture of HMAC.

Hmac Algorithm  Figure 3.6 illustrates the overall operation of HMAC. The
following terms are defined:

H = embedded hash function (e.g., SHA-1)

M = �message input to HMAC (including the padding specified in the
embedded hash function)

Figure 3.6  HMAC Structure

K+

Si

So

Y0 Y1 YL–1

b bits

b bits

b bits b bits

ipad

K+ opad

HashIV
n bits

n bits

pad to b bits

HashIV
n bits

n bits

HMAC(K, M)

H(Si || M)

M03_STAL4855_06_GE_C03.indd 92 8/29/16 6:20 PM

3.3 / Message Authentication Codes  93

Yi = ith block of M, 0 … i … (L - 1)

L = number of blocks in M

b = number of bits in a block

n = length of hash code produced by embedded hash function

K = �secret key; if key length is greater than b, the key is input to the hash
function to produce an n-bit key; recommended length is 7 n

K+ = K padded with zeros on the left so that the result is b bits in length

ipad = 00110110 (36 in hexadecimal) repeated b/8 times
opad = 01011100 (5C in hexadecimal) repeated b/8 times

Then HMAC can be expressed as

	 HMAC(K, M) = H[(K+ ⊕ opad) }H[(K+ ⊕ ipad) }M]]	

In words, HMAC is defined as follows:

1.	 Append zeros to the left end of K to create a b-bit string K+ (e.g., if K is of
length 160 bits and b = 512, then K will be appended with 44 zero bytes).

2.	 XOR (bitwise exclusive-OR) K+ with ipad to produce the b-bit block Si.

3.	 Append M to Si.

4.	 Apply H to the stream generated in step 3.

5.	 XOR K+ with opad to produce the b-bit block So.

6.	 Append the hash result from step 4 to So.

7.	 Apply H to the stream generated in step 6 and output the result.

Note that the XOR with ipad results in flipping one-half of the bits of K.
Similarly, the XOR with opad results in flipping one-half of the bits of K, but a dif-
ferent set of bits. In effect, by passing Si and So through the hash algorithm, we have
pseudorandomly generated two keys from K.

HMAC should execute in approximately the same time as the embedded hash
function for long messages. HMAC adds three executions of the basic hash function
(for Si, So, and the block produced from the inner hash).

MACs Based on Block Ciphers

In this section, we look at several MACs based on the use of a block cipher.

Cipher-Based Message Authentication Code (CMAC)  The Cipher-based
Message Authentication Code mode of operation is for use with AES and triple
DES. It is specified in SP 800-38B.

First, let us consider the operation of CMAC when the message is an integer
multiple n of the cipher block length b. For AES, b = 128, and for triple DES,
b = 64. The message is divided into n blocks (M1, M2, c , Mn). The algorithm
makes use of a k-bit encryption key K and an n-bit key, K1. For AES, the key size
k is 128, 192, or 256 bits; for triple DES, the key size is 112 or 168 bits. CMAC is
calculated as follows (Figure 3.7).

M03_STAL4855_06_GE_C03.indd 93 8/29/16 6:20 PM

94   chapter 3 / Public-Key Cryptography and Message Authentication

 C1 = E(K, M1)

 C2 = E(K, [M2 ⊕ C1])

 C3 = E(K, [M3 ⊕ C2])#
#
#

 Cn = E(K, [MN ⊕ Cn - 1 ⊕ K1])

 T = MSBTlen(Cn)

where

T = message authentication code, also referred to as the tag

Tlen = bit length of T
MSBs(X) = the s leftmost bits of the bit string X

If the message is not an integer multiple of the cipher block length, then
the final block is padded to the right (least significant bits) with a 1 and as many

Figure 3.7  Cipher-Based Message Authentication Code (CMAC)

EncryptK K K

T

Encrypt Encrypt

MSB(Tlen)

M1

K1

K2

M2 Mn

(a) Message length is integer multiple of block size

EncryptK K K

T

Encrypt Encrypt

MSB(Tlen)

10...0

(b) Message length is not integer multiple of block size

b

k

MnM1 M2

M03_STAL4855_06_GE_C03.indd 94 8/29/16 6:20 PM

3.3 / Message Authentication Codes  95

0s as necessary so that the final block is also of length b. The CMAC opera-
tion then proceeds as before, except that a different n-bit key K2 is used instead
of K1.

To generate the two n-bit keys, the block cipher is applied to the block that
consists entirely of 0 bits. The first subkey is derived from the resulting ciphertext
by a left shift of one bit and, conditionally, by XORing a constant that depends
on the block size. The second subkey is derived in the same manner from the first
subkey.

Counter with Cipher Block Chaining-Message Authentication Code  The
Counter with Cipher Block Chaining-Message Authentication Code (CCM) mode
of operation, defined in SP 800-38C, is referred to as an authenticated encryption
mode. “Authenticated encryption” is a term used to describe encryption systems
that simultaneously protect confidentiality and authenticity (integrity) of commu-
nications. Many applications and protocols require both forms of security, but until
recently the two services have been designed separately.

The key algorithmic ingredients of CCM are the AES encryption algorithm
(Section 2.2), the CTR mode of operation (Section 2.5), and the CMAC authenti-
cation algorithm. A single key K is used for both encryption and MAC algorithms.
The input to the CCM encryption process consists of three elements.

1.	 Data that will be both authenticated and encrypted. This is the plaintext mes-
sage P of data block.

2.	 Associated data A that will be authenticated but not encrypted. An example
is a protocol header that must be transmitted in the clear for proper protocol
operation but which needs to be authenticated.

3.	 A nonce N that is assigned to the payload and the associated data. This is a
unique value that is different for every instance during the lifetime of a pro-
tocol association and is intended to prevent replay attacks and certain other
types of attacks.

Figure 3.8 illustrates the operation of CCM. For authentication, the input
includes the nonce, the associated data, and the plaintext. This input is formatted
as a sequence of blocks B0 through Br. The first block contains the nonce plus some
formatting bits that indicate the lengths of the N, A, and P elements. This is followed
by zero or more blocks that contain A, followed by zero or more blocks that contain
P. The resulting sequence of blocks serves as input to the CMAC algorithm, which
produces a MAC value with length Tlen, which is less than or equal to the block
length (Figure 3.8a).

For encryption, a sequence of counters is generated that must be independent
of the nonce. The authentication tag is encrypted in CTR mode using the single
counter Ctr0. The Tlen most significant bits of the output are XORed with the tag
to produce an encrypted tag. The remaining counters are used for the CTR mode
encryption of the plaintext (Figure 2.11). The encrypted plaintext is concatenated
with the encrypted tag to form the ciphertext output (Figure 3.8b).

M03_STAL4855_06_GE_C03.indd 95 8/29/16 6:20 PM

96   chapter 3 / Public-Key Cryptography and Message Authentication

	 3.4	P ublic-Key Cryptography Principles

Of equal importance to conventional encryption is public-key encryption, which
finds use in message authentication and key distribution. This section looks first
at the basic concept of public-key encryption and takes a preliminary look at key
distribution issues. Section 3.5 examines the two most important public-key algo-
rithms: RSA and Diffie–Hellman. Section 3.6 introduces digital signatures.

Figure 3.8  Counter with Cipher Block Chaining-Message Authentication Code

(a) Authentication

(b) Encryption

B0

Ctr0

B1 B2 Br

Tag

Tag

Nonce Plaintext

Plaintext

Ciphertext

Ass. Data

K CMAC

MSB(Tlen)
K

CTRCtr1, Ctr2, ..., Ctrm

EncryptK

M03_STAL4855_06_GE_C03.indd 96 8/29/16 6:20 PM

3.4 / Public-Key Cryptography Principles  97

Public-Key Encryption Structure

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76], is the first truly revolutionary advance in encryption in literally thou-
sands of years. Public-key algorithms are based on mathematical functions rather
than on simple operations on bit patterns, such as are used in symmetric encryption
algorithms. More important, public-key cryptography is asymmetric, involving the
use of two separate keys—in contrast to the symmetric conventional encryption,
which uses only one key. The use of two keys has profound consequences in the
areas of confidentiality, key distribution, and authentication.

Before proceeding, we should first mention several common misconcep-
tions concerning public-key encryption. One is that public-key encryption is more
secure from cryptanalysis than conventional encryption. In fact, the security of any
encryption scheme depends on (1) the length of the key and (2) the computational
work involved in breaking a cipher. There is nothing in principle about either con-
ventional or public-key encryption that makes one superior to another from the
point of view of resisting cryptanalysis. A second misconception is that public-key
encryption is a general-purpose technique that has made conventional encryp-
tion obsolete. On the contrary, because of the computational overhead of current
public-key encryption schemes, there seems no foreseeable likelihood that conven-
tional encryption will be abandoned. Finally, there is a feeling that key distribution
is trivial when using public-key encryption, compared to the rather cumbersome
handshaking involved with key distribution centers for conventional encryption.
In fact, some form of protocol is needed, often involving a central agent, and the
procedures involved are no simpler or any more efficient than those required for
conventional encryption.

A public-key encryption scheme has six ingredients (Figure 3.9a).

■■ Plaintext: This is the readable message or data that is fed into the algorithm
as input.

■■ Encryption algorithm: The encryption algorithm performs various transfor-
mations on the plaintext.

■■ Public and private key: This is a pair of keys that have been selected so that if
one is used for encryption, the other is used for decryption. The exact trans-
formations performed by the encryption algorithm depend on the public or
private key that is provided as input.

■■ Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

■■ Decryption algorithm: This algorithm accepts the ciphertext and the match-
ing key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

M03_STAL4855_06_GE_C03.indd 97 8/29/16 6:20 PM

98   chapter 3 / Public-Key Cryptography and Message Authentication

The essential steps are the following:

1.	 Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

2.	 Each user places one of the two keys in a public register or other accessible
file. This is the public key. The companion key is kept private. As Figure 3.9a

Figure 3.9  Public-Key Cryptography

Plaintext
input

Bobs’s
public key

ring

Transmitted
ciphertext

Y = E[PUa, X]

X =
D[PRa, Y]

Plaintext
outputEncryption algorithm

(e.g., RSA)
Decryption algorithm

Joy

Mike

Mike Bob

Ted

Alice

X

Plaintext
input

Transmitted
ciphertext

Y = E[PRb, X]

X =
D[PUb, Y]

Plaintext
outputEncryption algorithm

(e.g., RSA)

X

Alice’s public
key

Bob’s public
key

PUa

PUbBob’s private
key

PRb

PRa Alice’s private
key

Decryption algorithm

Alice’s
public key

ring

Joy
Ted

(a) Encryption with public keyBob Alice

(b) Encryption with private keyBob Alice

M03_STAL4855_06_GE_C03.indd 98 8/29/16 6:20 PM

3.4 / Public-Key Cryptography Principles  99

suggests, each user maintains a collection of public keys obtained from
others.

3.	 If Bob wishes to send a private message to Alice, Bob encrypts the message
using Alice’s public key.

4.	 When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s
private key.

With this approach, all participants have access to public keys, and private
keys are generated locally by each participant and therefore need never be distrib-
uted. As long as a user protects his or her private key, incoming communication is
secure. At any time, a user can change the private key and publish the companion
public key to replace the old public key.

The key used in conventional encryption is typically referred to as a secret
key. The two keys used for public-key encryption are referred to as the public key
and the private key. Invariably, the private key is kept secret, but it is referred
to as a private key rather than a secret key to avoid confusion with conventional
encryption.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that
is otherwise likely to lead to confusion. Public-key systems are characterized by
the use of a cryptographic type of algorithm with two keys, one held private and
one available publicly. Depending on the application, the sender uses either the
sender’s private key, the receiver’s public key, or both to perform some type of
cryptographic function. In broad terms, we can classify the use of public-key crypto-
systems into three categories:

■■ Encryption/decryption: The sender encrypts a message with the recipient’s
public key.

■■ Digital signature: The sender “signs” a message with its private key. Signing
is achieved by a cryptographic algorithm applied to the message or to a small
block of data that is a function of the message.

■■ Key exchange: Two sides cooperate to exchange a session key. Several dif-
ferent approaches are possible, involving the private key(s) of one or both
parties.

Some algorithms are suitable for all three applications, whereas others can be
used only for one or two of these applications. Table 3.2 indicates the applications
supported by the algorithms discussed in this chapter: RSA and Diffie–Hellman.
This table also includes the Digital Signature Standard (DSS) and elliptic-curve
cryptography, also mentioned later in this chapter.

One general observation can be made at this point. Public-key algorithms
require considerably more computation than symmetric algorithms for compara-
ble security and a comparable plaintext length. Accordingly, public-key algorithms
are used only for short messages or data blocks, such as to encrypt a secret key
or PIN.

M03_STAL4855_06_GE_C03.indd 99 8/29/16 6:20 PM

100   chapter 3 / Public-Key Cryptography and Message Authentication

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figure 3.9 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without dem-
onstrating that such algorithms exist. However, they did lay out the conditions that
such algorithms must fulfill [DIFF76]:

1.	 It is computationally easy for a party B to generate a pair (public key PUb,
private key PRb).

2.	 It is computationally easy for a sender A, knowing the public key and the
message to be encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3.	 It is computationally easy for the receiver B to decrypt the resulting cipher-
text using the private key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4.	 It is computationally infeasible for an opponent, knowing the public key,
PUb, to determine the private key, PRb.

5.	 It is computationally infeasible for an opponent, knowing the public key,
PUb, and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all
public-key applications.

1.	 Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

	 3.5	P ublic-Key Cryptography Algorithms

Two widely used public-key algorithms are RSA and Diffie–Hellman. We look at
both of these in this section and then briefly introduce two other algorithms.4

4This section uses some elementary concepts from number theory. For a review, see Appendix A.

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Diffie–Hellman No No Yes

DSS No Yes No

Elliptic curve Yes Yes Yes

Table 3.2  Applications for Public-Key Cryptosystems

M03_STAL4855_06_GE_C03.indd 100 8/29/16 6:20 PM

3.5 / Public-Key Cryptography Algorithms  101

The RSA Public-Key Encryption Algorithm

One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has until recently reigned supreme as the most widely accepted and imple-
mented approach to public-key encryption. Currently, both RSA and elliptic-curve
cryptography are widely used. RSA is a block cipher in which the plaintext and
ciphertext are integers between 0 and n - 1 for some n.

Basic RSA Encryption and Decryption  Encryption and decryption are of the fol-
lowing form period for some plaintext block M and ciphertext block C:

 C = Me mod n

 M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the values of n and e, and only the receiver
knows the value of d. This is a public-key encryption algorithm with a public key of
KU = {e, n} and a private key of KR = {d, n}. For this algorithm to be satisfactory
for public-key encryption, the following requirements must be met.

1.	 It is possible to find values of e, d, n such that Med mod n = M for all M 6 n.

2.	 It is relatively easy to calculate Me and Cd for all values of M 6 n.

3.	 It is infeasible to determine d given e and n.

The first two requirements are easily met. The third requirement can be met
for large values of e and n.

Figure 3.10 summarizes the RSA algorithm. Begin by selecting two prime
numbers p and q and calculating their product n, which is the modulus for encryp-
tion and decryption. Next, we need the quantity f(n), referred to as the Euler totient
of n, which is the number of positive integers less than n and relatively prime to n.
Then select an integer e that is relatively prime to f(n) [i.e., the greatest common
divisor of e and f(n) is 1]. Finally, calculate d as the multiplicative inverse of e,
modulo f(n). It can be shown that d and e have the desired properties.

Suppose that user A has published its public key and that user B wishes to
send the message M to A. Then B calculates C = Me (mod n) and transmits C. On
receipt of this ciphertext, user A decrypts by calculating M = Cd (mod n).

An example, from [SING99], is shown in Figure 3.11. For this example, the
keys were generated as follows:

1.	 Select two prime numbers, p = 17 and q = 11.

2.	 Calculate n = pq = 17 * 11 = 187.

3.	 Calculate f(n) = (p - 1)(q - 1) = 16 * 10 = 160.

4.	 Select e such that e is relatively prime to f(n) = 160 and less than f(n); we
choose e = 7.

5.	 Determine d such that de mod 160 = 1 and d 6 160. The correct value is
d = 23, because 23 * 7 = 161 = (1 * 160) + 1.

The resulting keys are public key PU = {7, 187} and private key PR =
{23, 187}. The example shows the use of these keys for a plaintext input of M = 88.

M03_STAL4855_06_GE_C03.indd 101 8/29/16 6:20 PM

102   chapter 3 / Public-Key Cryptography and Message Authentication

For encryption, we need to calculate C = 887 mod 187. Exploiting the properties of
modular arithmetic, we can do this as follows:

 887 mod 187 = [(884 mod 187) * (882 mod 187) * (881 mod 187)] mod 187

 881 mod 187 = 88 882 mod 187 = 7744 mod 187 = 77

 884 mod 187 = 59,969,536 mod 187 = 132

 887 mod 187 = (88 * 77 * 132) mod 187 = 894,432 mod 187 = 11

Figure 3.10  The RSA Algorithm

Select p, q

Select integer e

Calculate n = p × q

Calculate d

Calculate f(n) = (p – 1)(q – 1)

p and q both prime, p ≠ q

Key Generation

Encryption

gcd (f(n), e) = 1; 1 < e < f(n)

Public key

de mod f(n) = 1

KU = {e, n}

Plaintext: M < n

Ciphertext: C = Me (mod n)

Private key KR = {d, n}

Decryption

Ciphertext: C

Plaintext: M = Cd (mod n)

Figure 3.11  Example of RSA Algorithm

Encryption

plaintext
88

plaintext
88

ciphertext
1188 mod 187 = 11

PU = 7, 187

Decryption

7 11 mod 187 = 88

PR = 23, 187

23

M03_STAL4855_06_GE_C03.indd 102 8/29/16 6:20 PM

3.5 / Public-Key Cryptography Algorithms  103

For decryption, we calculate M = 1123 mod 187:

 1123 mod 187 = [(111 mod 187) * (112 mod 187) * (114 mod 187) *
(118 mod 187) * (118 mod 187)] mod 187

 111 mod 187 = 11

 112 mod 187 = 121

 114 mod 187 = 14,641 mod 187 = 55

 118 mod 187 = 214,358,881 mod 187 = 33

 1123 mod 187 = (11 * 121 * 55 * 33 * 33) mod 187

 = 79,720,245 mod 187 = 88

Security Considerations  The security of RSA depends on it being used in such a
way as to counter potential attacks. Four possible attack approaches are as follows:

■■ Mathematical attacks: There are several approaches, all equivalent in effort
to factoring the product of two primes. The defense against mathematical
attacks is to use a large key size. Thus, the larger the number of bits in d, the
better. However, because the calculations involved, both in key generation
and in encryption/decryption, are complex, the larger the size of the key,
the slower the system will run. SP 800-131A (Transitions: Recommendation
for Transitioning the Use of Cryptographic Algorithms and Key Lengths,
November 2015) recommends the use of a 2048-bit key size. A recent report
from the European Union Agency for Network and Information Security
(Algorithms, key size and parameters report—2014, November 2014) recom-
mends a 3072-bit key length. Either of these lengths should provide adequate
security for a considerable time into the future.

■■ Timing attacks: These depend on the running time of the decryption algo-
rithm. Various approaches to mask the time required so as to thwart attempts
to deduce key size have been suggested, such as introducing a random delay.

■■ Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm by selecting blocks of data that, when processed using the target’s
private key, yield information needed for cryptanalysis. These attacks can be
thwarted by suitable padding of the plaintext.

To counter sophisticated chosen ciphertext attacks, RSA Security Inc., a
leading RSA vendor and former holder of the RSA patent, recommends modify-
ing the plaintext using a procedure known as optimal asymmetric encryption pad-
ding (OAEP). A full discussion of the threats and OAEP are beyond our scope;
see [POIN02] for an introduction and [BELL94a] for a thorough analysis. Here, we
simply summarize the OAEP procedure.

Figure 3.12 depicts OAEP encryption. As a first step, the message M to be
encrypted is padded. A set of optional parameters, P, is passed through a hash func-
tion, H. The output is then padded with zeros to get the desired length in the overall
data block (DB). Next, a random seed is generated and passed through another hash
function, called the mask generating function (MGF). The resulting hash value is bit-
by-bit XORed with DB to produce a maskedDB. The maskedDB is in turn passed

M03_STAL4855_06_GE_C03.indd 103 8/29/16 6:20 PM

104   chapter 3 / Public-Key Cryptography and Message Authentication

through the MGF to form a hash that is XORed with the seed to produce the masked
seed. The concatenation of the maskedseed and the maskedDB forms the encoded
message EM. Note that the EM includes the padded message masked by the seed,
and the seed masked by the maskedDB. The EM is then encrypted using RSA.

Diffie–Hellman Key Exchange

The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography [DIFF76] and is generally
referred to as the Diffie–Hellman key exchange. A number of commercial products
employ this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a
secret key that then can be used for subsequent encryption of messages. The algo-
rithm itself is limited to the exchange of the keys.

The Diffie–Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. First, we define a primitive root of a prime number p as one whose

Figure 3.12  Encryption Using Optimal Asymmetric Encryption Padding (OAEP)

seed

maskedseed

DB

maskedDB

M

EM

padding

H(P)

MGF

MGF

P

P = encoding parameters
M = message to be encoded
H = hash function

DB = data block
MGF = mask generating function
EM = encoded message

M03_STAL4855_06_GE_C03.indd 104 8/29/16 6:20 PM

3.5 / Public-Key Cryptography Algorithms  105

powers generate all the integers from 1 to p - 1. That is, if a is a primitive root of
the prime number p, then the numbers

a mod p, a2 mod p, c , ap-1 mod p

are distinct and consist of the integers from 1 through p - 1 in some permutation.
For any integer b less than p and a primitive root a of prime number p, one can

find a unique exponent i such that

b = ai mod p 0 … i … (p - 1)

The exponent i is referred to as the discrete logarithm, or index, of b for the base a,
mod p. We denote this value as dloga, p(b).5

The Algorithm  With this background, we can define the Diffie–Hellman key
exchange, which is summarized in Figure 3.13. For this scheme, there are two pub-
licly known numbers: a prime number q and an integer a that is a primitive root
of q. Suppose the users A and B wish to exchange a key. User A selects a random
integer XA 6 q and computes YA = aXA mod q. Similarly, user B independently
selects a random integer XB 6 q and computes YB = aXB mod q. Each side keeps
the X value private and makes the Y value available publicly to the other side.
User A computes the key as K = (YB)XA mod q and user B computes the key as
K = (YA)XB mod q. These two calculations produce identical results:

 K = (YB)XA mod q

 = (aXB mod q)XA mod q

 = (aXB)XA mod q

 = aXBXA mod q

 = (aXA)XB mod q

 = (aXA mod q)XB mod q

 = (YA)XB mod q

The result is that the two sides have exchanged a secret value. Furthermore,
because XA and XB are private, an adversary only has the following ingredients to
work with: q, a, YA, and YB. Thus, the adversary is forced to take a discrete loga-
rithm to determine the key. For example, to determine the private key of user B, an
adversary must compute

XB = dloga,q(YB)

The adversary can then calculate the key K in the same manner as user B does.
The security of the Diffie–Hellman key exchange lies in the fact that, while

it is relatively easy to calculate exponentials modulo a prime, it is very difficult
to calculate discrete logarithms. For large primes, the latter task is considered
infeasible.

5Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

M03_STAL4855_06_GE_C03.indd 105 8/29/16 6:20 PM

106   chapter 3 / Public-Key Cryptography and Message Authentication

Figure 3.13  The Diffie–Hellman Key Exchange

Alice Bob

Alice and Bob share a
prime q and A, such that
A < q and A is a primitive
root of q

Alice generates a private
key XA such that XA < q

Alice calculates a public
key YA = AXA mod q

Alice receives Bob’s
public key YB in plaintext

Alice calculates shared
secret key K = (YB)XA mod q

Bob calculates shared
secret key K = (YA)XB mod q

Bob receives Alice’s
public key YA in plaintext

Bob calculates a public
key YB = AXB mod q

Bob generates a private
key XB such that XB < q

Alice and Bob share a
prime q and A, such that
A < q and A is a primitive
root of q

YA YB

Here is an example. Key exchange is based on the use of the prime number
q = 353 and a primitive root of 353, in this case a = 3. A and B select secret keys
XA = 97 and XB = 233, respectively. Each computes its public key:

 A computes YA = 397 mod 353 = 40. B computes YB = 3233 mod 353 = 248.

After they exchange public keys, each can compute the common secret key:

 A computes K = (YB)XA mod 353 = 24897 mod 353 = 160.

 B computes K = (YA)XB mod 353 = 40233 mod 353 = 160.

We assume an attacker would have available the following information:

q = 353; a = 3; YA = 40; YB = 248

In this simple example, it would be possible to determine the secret key 160 by
brute force. In particular, an attacker E can determine the common key by discover-
ing a solution to the equation 3a mod 353 = 40 or the equation 3b mod 353 = 248.
The brute-force approach is to calculate powers of 3 modulo 353, stopping when
the result equals either 40 or 248. The desired answer is reached with the exponent
value of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.

M03_STAL4855_06_GE_C03.indd 106 8/29/16 6:20 PM

3.5 / Public-Key Cryptography Algorithms  107

Key Exchange Protocols  Figure 3.13 shows a simple protocol that makes use of
the Diffie–Hellman calculation. Suppose that user A wishes to set up a connection
with user B and use a secret key to encrypt messages on that connection. User A
can generate a one-time private key XA, calculate YA, and send that to user B. User
B responds by generating a private value XB, calculating YB, and sending YB to user
A. Both users can now calculate the key. The necessary public values q and a would
need to be known ahead of time. Alternatively, user A could pick values for q and
include those in the first message.

As an example of another use of the Diffie–Hellman algorithm, suppose that
a group of users (e.g., all users on a LAN) each generate a long-lasting private
value XA and calculate a public value YA. These public values, together with global
public values for q and a, are stored in some central directory. At any time, user
B can access user A’s public value, calculate a secret key, and use that to send an
encrypted message to user A. If the central directory is trusted, then this form
of communication provides both confidentiality and a degree of authentication.
Because only A and B can determine the key, no other user can read the mes-
sage (confidentiality). Recipient A knows that only user B could have created a
message using this key (authentication). However, the technique does not protect
against replay attacks.

Man-in-the-Middle Attack  The protocol depicted in Figure 3.13 is insecure
against a man-in-the-middle attack. Suppose Alice and Bob wish to exchange keys,
and Darth is the adversary. The attack proceeds as follows (Figure 3.14):

1.	 Darth prepares for the attack by generating two random private keys XD1
and XD2, and then computing the corresponding public keys YD1 and YD2.

2.	 Alice transmits YA to Bob.

3.	 Darth intercepts YA and transmits YD1 to Bob. Darth also calculates
K2 = (YA)XD2 mod q.

4.	 Bob receives YD1 and calculates K1 = (YD1)
XB mod q.

5.	 Bob transmits YB to Alice.

6.	 Darth intercepts YB and transmits YD2 to Alice. Darth calculates
K1 = (YB)XD1 mod q.

7.	 Alice receives YD2 and calculates K2 = (YD2)
XA mod q.

At this point, Bob and Alice think that they share a secret key. Instead Bob
and Darth share secret key K1, and Alice and Darth share secret key K2. All future
communication between Bob and Alice is compromised in the following way:

1.	 Alice sends an encrypted message M: E(K2, M).

2.	 Darth intercepts the encrypted message and decrypts it to recover M.

3.	 Darth sends Bob E(K1, M) or E(K1, M′), where M′ is any message. In the
first case, Darth simply wants to eavesdrop on the communication without
altering it. In the second case, Darth wants to modify the message going to
Bob.

M03_STAL4855_06_GE_C03.indd 107 8/29/16 6:20 PM

108   chapter 3 / Public-Key Cryptography and Message Authentication

The key exchange protocol is vulnerable to such an attack because it does not
authenticate the participants. This vulnerability can be overcome with the use of
digital signatures and public-key certificates; these topics are explored later in this
chapter and in Chapter 4.

Other Public-Key Cryptography Algorithms

Two other public-key algorithms have found commercial acceptance: DSS and
elliptic-curve cryptography.

Digital Signature Standard  The National Institute of Standards and Technology
(NIST) has published Federal Information Processing Standard FIPS PUB 186,
known as the Digital Signature Standard (DSS). The DSS makes use of the SHA-1
and presents a new digital signature technique, the Digital Signature Algorithm

Figure 3.14  Man-in-the-Middle Attack

Alice Darth Bob

Private key XA
Public key
YA = AXA mod q

Private key XB
Public key
YB = AXB mod q

Private keys XD1, XD2
Public keys
YD1 = AXD1 mod q
YD2 = AXD2 mod q

YA

Secret key
K2 = (YA)XD2 mod q

Secret key
K1 = (YB)XD1 mod q

Secret key
K1 = (YD1)XB mod q

Secret key
K2 = (YD2)XA mod q

Alice and Darth
share K2

Bob and Darth
share K1

YD2 YD1

YB

M03_STAL4855_06_GE_C03.indd 108 8/29/16 6:20 PM

3.6 / Digital Signatures  109

(DSA). The DSS was originally proposed in 1991 and revised in 1993 in response to
public feedback concerning the security of the scheme. There was a further minor
revision in 1996. The DSS uses an algorithm that is designed to provide only the
digital signature function. Unlike RSA, it cannot be used for encryption or key
exchange.

Elliptic-Curve Cryptography  The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.
The bit length for secure RSA use has increased over recent years, and this has
put a heavier processing load on applications using RSA. This burden has ramifica-
tions, especially for electronic commerce sites that conduct large numbers of secure
transactions. Recently, a competing system has begun to challenge RSA: elliptic
curve cryptography (ECC). Already, ECC is showing up in standardization efforts,
including the IEEE P1363 Standard for Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie–
Hellman, and a full mathematical description is beyond the scope of this book.
The technique is based on the use of a mathematical construct known as the elliptic
curve.

	 3.6	D igital Signatures

NIST FIPS PUB 186-4 [Digital Signature Standard (DSS), July 2013] defines a digi-
tal signature as follows: The result of a cryptographic transformation of data that,
when properly implemented, provides a mechanism for verifying origin authentica-
tion, data integrity, and signatory non-repudiation.

Thus, a digital signature is a data-dependent bit pattern, generated by an agent
as a function of a file, message, or other form of data block. Another agent can ac-
cess the data block and its associated signature and verify that (1) the data block has
been signed by the alleged signer and that (2) the data block has not been altered
since the signing. Further, the signer cannot repudiate the signature.

FIPS 186-4 specifies the use of one of three digital signature algorithms:

■■ Digital Signature Algorithm (DSA): The original NIST-approved algorithm,
which is based on the difficulty of computing discrete logarithms.

■■ RSA Digital Signature Algorithm: Based on the RSA public-key algorithm.

■■ Elliptic Curve Digital Signature Algorithm (ECDSA): Based on elliptic-
curve cryptography.

In this section, we provide a brief overview of the digital signature process,
then describe the RSA digital signature algorithm.

M03_STAL4855_06_GE_C03.indd 109 8/29/16 6:20 PM

110   chapter 3 / Public-Key Cryptography and Message Authentication

Digital Signature Generation and Verification

Figure 3.15 is a generic model of the process of making and using digital signatures.
All of the digital signature schemes in FIPS 186-4 have this structure. Suppose that
Bob wants to send a message to Alice. Although it is not important that the mes-
sage be kept as a secret, he wants Alice to be certain that the message is indeed
from him. For this purpose, Bob uses a secure hash function, such as SHA-512, to
generate a hash value for the message. That hash value, together with Bob’s private
key, serve as input to a digital signature generation algorithm that produces a short
block that functions as a digital signature. Bob sends the message with the signa-
ture attached. When Alice receives the message plus signature, she (1) calculates

Figure 3.15  Simplified Depiction of Essential Elements of Digital Signature Process

Bob Alice

Bob’s
signature

for M

Message M

Cryptographic
hash

function

Digital
signature

generation
algorithm

Digital
signature

veri�cation
algorithm

h

Message M

Cryptographic
hash

function

h

S

Message M S Return
signature

valid or not valid

Bob’s
private

key

(a) Bob signs a message (b) Alice veri�es the signature

Bob’s
public
key

M03_STAL4855_06_GE_C03.indd 110 8/29/16 6:20 PM

3.6 / Digital Signatures  111

a hash value for the message and (2) provides the hash value and Bob’s public key
as inputs to a digital signature verification algorithm. If the algorithm returns the
result that the signature is valid, Alice is assured that the message must have been
signed by Bob. No one else has Bob’s private key and therefore no one else could
have created a signature that could be verified for this message with Bob’s public
key. In addition, it is impossible to alter the message without access to Bob’s pri-
vate key, so the message is authenticated both in terms of source and in terms of
data integrity.

It is important to emphasize that the encryption process just described does
not provide confidentiality. That is, the message being sent is safe from alteration,
but not safe from eavesdropping. This is obvious in the case of a signature based
on a portion of the message, because the rest of the message is transmitted in
the clear. Even in the case of complete encryption, there is no protection of con-
fidentiality because any observer can decrypt the message by using the sender’s
public key.

RSA Digital Signature Algorithm

The essence of the RSA digital signature algorithm is to encrypt the hash of the
message to be signed using RSA. However, as with the use of RSA for encryption of
keys or short messages, the RSA digital signature algorithm first modifies the hash
value to enhance security. There are several approaches to this, one of which is the
RSA Probabilistic Signature Scheme (RSA-PSS). RSA-PSS is the latest of the RSA
schemes and the one that RSA Laboratories recommends as the most secure of the
RSA digital signature schemes. We provide a brief overview here; for more detail
see [STAL16].

Figure 3.16 illustrates the RSS-PSS signature generation process. The steps
are as follows:

1.	 Generate a hash value, or message digest, mHash from the message M to be
signed.

2.	 Pad mHash with a constant value padding1 and pseudorandom value salt to
form M'

3.	 Generate hash value H from M'.

4.	 Generate a block DB consisting of a constant value padding 2 and salt.

5.	 Use the mask generating function MGF, which produces a randomized out-
put from input H of the same length as DB.

6.	 Create the encoded message (EM) block by padding H with the hexadecimal
constant BC and the XOR of H and DB.

7.	 Encrypt EM with RSA using the signer’s private key.

The objective with this algorithm is to make it more difficult for an adversary
to find another message that maps to the same message digest as a given message or
to find two messages that map to the same message digest. Because the salt changes
with every use, signing the same message twice using the same private key will yield
two different signatures. This is an added measure of security.

M03_STAL4855_06_GE_C03.indd 111 8/29/16 6:20 PM

112   chapter 3 / Public-Key Cryptography and Message Authentication

	 3.7 Key Terms, Review Questions, and Problems

Hash

Hash

MGF

M

Signature

mHash saltpadding1

bcmaskedDB

saltpadding2

Mœ =

DB =

EM = H

E
signer’s

private key

Figure 3.16  RSA-PSS Encoding and Signature Generation

Key Terms

authenticated encryption
Diffie–Hellman key

exchange
digital signature
Digital Signature Standard

(DSS)
elliptic-curve cryptography

(ECC)
HMAC

key exchange
MD5
message authentication
message authentication code

(MAC)
message digest
one-way hash function
private key
public key

public-key certificate
public-key encryption
RSA
secret key
secure hash function
SHA-1
strong collision resistant
weak collision resistant

Review Questions

	 3.1	 List three approaches to message authentication.
	 3.2	 What is a message authentication code?

M03_STAL4855_06_GE_C03.indd 112 8/29/16 6:20 PM

3.7 / Key Terms, Review Questions, and Problems  113

	 3.3	 What is a one-way hash function? How is it different from message authentication code?
	 3.4	 List the properties of a strong hash function.
	 3.5	 Compare SHA-1 and SHA-2 with respect to SHA parameters.
	 3.6	 List the design objectives for HMAC.
	 3.7	 Differentiate between public-key cryptosystem and symmetric encryption algorithm.
	 3.8	 List the public-key cryptography algorithm used in digital signatures, encryption/

decryption, and key exchange.
	 3.9	 In what way is the Diffie–Hellman key exchange algorithm insecure against a

man-in-the-middle attack?

Problems

	 3.1	 Consider a 32-bit hash function defined as the concatenation of two 16-bit functions:
XOR and RXOR, which are defined in Section 3.2 as “two simple hash functions.”
a.	 Will this checksum detect all errors caused by an odd number of error bits?

Explain.
b.	 Will this checksum detect all errors caused by an even number of error bits? If not,

characterize the error patterns that will cause the checksum to fail.
c.	 Comment on the effectiveness of this function for use as a hash function for

authentication.
	 3.2	 Suppose H(m) is a collision-resistant hash function that maps a message of arbitrary

bit length into an n-bit hash value. Is it true that, for all messages x, x′ with x [x′, we
have H(x) ≠ H(x′)? Explain your answer.

	 3.3	 State the value of the padding field in SHA-512 if the length of the message is
a.	 4987 bits
b.	 4199 bits
c.	 1227 bits

	 3.4	 State the value of the length field in SHA-512 if the length of the message is
a.	 3967 bits
b.	 3968 bits
c.	 3969 bits

	 3.5	 a.	 Consider the following hash function. Messages are in the form of a sequence
of decimal numbers, M = (a1, a2, c , at). The hash value h is calculated as ¢at

i = 1
ai≤mod n, for some predefined value n. Does this hash function satisfy any

of the requirements for a hash function listed in Section 3.2? Explain your answer.

b.	 Repeat part (a) for the hash function h = ¢at

i = 1
(ai)

2≤mod n.

c.	 Calculate the hash function of part (b) for M = (237, 632, 913, 423, 349) and
n = 757.

	 3.6	 This problem introduces a hash function similar in spirit to SHA that operates on let-
ters instead of binary data. It is called the toy tetragraph hash (tth).6 Given a message
consisting of a sequence of letters, tth produces a hash value consisting of four let-
ters. First, tth divides the message into blocks of 16 letters, ignoring spaces, punctua-
tion, and capitalization. If the message length is not divisible by 16, it is padded out
with nulls. A four-number running total is maintained that starts out with the value
(0, 0, 0, 0); this is input to the compression function for processing the first block. The
compression function consists of two rounds. Round 1: Get the next block of text and
arrange it as a row-wise 4 block of text and covert it to numbers (A = 0, B = 1, etc.).
For example, for the block ABCDEFGHIJKLMNOP, we have

6I thank William K. Mason of the magazine staff of The Cryptogram for providing this example.

M03_STAL4855_06_GE_C03.indd 113 8/29/16 6:20 PM

114   chapter 3 / Public-Key Cryptography and Message Authentication

A B C D

E F G H

I J K L

M N O P

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from round 1,
rotate the first row left by 1, second row left by 2, third row left by 3, and reverse the
order of the fourth row. In our example:

B C D A

G H E F

L I J K

P O N M

1 2 3 0

6 7 4 5

11 8 9 10

15 14 13 12

Now, add each column mod 26 and add the result to the running total. The new run-
ning total is (5, 7, 9, 11). This running total is now the input into the first round of the
compression function for the next block of text. After the final block is processed,
convert the final running total to letters. For example, if the message is ABCDE
FGHIJKLMNOP, then the hash is FHJL.
a.	 Draw figures comparable to Figures 3.4 and 3.5 to depict the overall tth logic and

the compression function logic.
b.	 Calculate the hash function for the 48-letter message “I leave twenty million dol-

lars to my friendly cousin Bill.”
c.	 To demonstrate the weakness of tth, find a 48-letter block that produces the same

hash as that just derived. Hint: Use lots of A’s.
	 3.7	 It is possible to use a hash function to construct a block cipher with a structure similar

to DES. Because a hash function is one way and a block cipher must be reversible (to
decrypt), how is it possible?

	 3.8	 Now consider the opposite problem: Use an encryption algorithm to construct a one-
way hash function. Consider using RSA with a known key. Then process a message
consisting of a sequence of blocks as follows: Encrypt the first block, XOR the result
with the second block and encrypt again, and so on. Show that this scheme is not
secure by solving the following problem. Given a two-block message B1, B2, and its
hash, we have

	 RSAH(B1, B2) = RSA(RSA(B1) ⊕ B2)	

Given an arbitrary block C1, choose C2 so that RSAH(C1, C2) = RSAH(B1, B2).
Thus, the hash function does not satisfy weak collision resistance.

	 3.9	 One of the most widely used MACs, referred to as the Data Authentication
Algorithm, is based on DES. The algorithm is both a FIPS publication (FIPS PUB
113) and an ANSI standard (X9.17). The algorithm can be defined as using the cipher
block chaining (CBC) mode of operation of DES with an initialization vector of zero
(Figure 2.9). The data (e.g., message, record, file, or program) to be authenticated is
grouped into contiguous 64-bit blocks: P1, P2, c , PN. If necessary, the final block is
padded on the right with 0s to form a full 64-bit block. The MAC consists of either
the entire ciphertext block CN or the leftmost M bits of the block with 16 … M … 64.
Show that the same result can be produced using the cipher feedback mode.

	 3.10	 In this problem, we will compare the security services that are provided by digital
signatures (DS) and message authentication codes (MAC). We assume that Oscar

M03_STAL4855_06_GE_C03.indd 114 8/29/16 6:20 PM

3.7 / Key Terms, Review Questions, and Problems  115

is able to observe all messages sent from Alice to Bob and vice versa. Oscar has no
knowledge of any keys but the public one in case of DS. State whether and how (i)
DS and (ii) MAC protect against each attack. The value auth(x) is computed with
a DS or a MAC algorithm, respectively.
a.	 (Message integrity) Alice sends a message x = “Transfer $1000 to Mark”

in the clear and also sends auth(x) to Bob. Oscar intercepts the message and
replaces “Mark” with “Oscar.” Will Bob detect this?

b.	 (Replay) Alice sends a message x = “Transfer $1000 to Oscar” in the
clear and also sends auth(x) to Bob. Oscar observes the message and signature
and sends them 100 times to Bob. Will Bob detect this?

c.	 (Sender Authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth(x) to Bob, but Alice claims the same. Can Bob clear
the question in either case?

d.	 (Authentication with Bob cheating) Bob claims that he received a message x with
a valid signature auth(x) from Alice (e.g., “Transfer $1000 from Alice to Bob”)
but Alice claims she has never sent it. Can Alice clear this question in either case?

	 3.11	 Figure 3.17 shows an alternative means of implementing HMAC.
a.	 Describe the operation of this implementation.
b.	 What potential benefit does this implementation have over that shown in Figure 3.6?

Figure 3.17  Efficient Implementation of HMAC

b bits b bits b bits

Precomputed Computed per message

HashIV n bits

b bits

n bits

Pad to b bits

n bits

n bits

HMAC(K, M)

f

IV

b bits

f f

Si

So

Y0 Y1

ipad

K+

K+

opad

YL–1

H(Si || M)

M03_STAL4855_06_GE_C03.indd 115 8/29/16 6:20 PM

116   chapter 3 / Public-Key Cryptography and Message Authentication

	 3.12	 In this problem, we demonstrate that for CMAC, a variant that XORs the second
key after applying the final encryption doesn’t work. Let us consider this for the
case of the message being an integer multiple of the block size. Then the variant
can be expressed as VMAC(K, M) = CBC(K, M) ⊕ K1. Now suppose an adver-
sary is able to ask for the MACs of three messages: the message 0 = 0n, where n is
the cipher block size; the message 1 = 1n; and the message 1 } 0. As a result of these
three queries, the adversary gets T0 = CBC(K, 0) ⊕ K1; T1 = CBC(K, 1) ⊕ K1 and
T2 = CBC(K, [CBC(K, 1)]) ⊕ K1. Show that the adversary can compute the correct
MAC for the (unqueried) message 0 } (T0 ⊕ T1).

	 3.13	 Prior to the discovery of any specific public-key schemes, such as RSA, an existence
proof was developed whose purpose was to demonstrate that public-key encryption is
possible in theory. Consider the functions f1(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3,
where all values are integers with 1 … xi, yi, zi … N. Function f1 can be represented
by a vector M1 of length N in which the kth entry is the value of f1(k). Similarly, f2
and f3 can be represented by N * N matrices M2 and M3. The intent is to represent
the encryption/decryption process by table lookups for tables with very large values
of N. Such tables would be impractically huge but in principle could be constructed.
The scheme works as follows: Construct M1 with a random permutation of all inte-
gers between 1 and N; that is, each integer appears exactly once in M1. Construct M2
so that each row contains a random permutation of the first N integers. Finally, fill in
M3 to satisfy the condition:

	 f3(f2(f1(k), p), k) = p for all k, p with 1 … k, p … N	

In words,
1. 	 M1 takes an input k and produces an output x.
2.	 M2 takes inputs x and p giving output z.
3.	 M3 takes inputs z and k and produces p.
The three tables, once constructed, are made public.
a.	 It should be clear that it is possible to construct M3 to satisfy the preceding condi-

tion. As an example, fill in M3 for the following simple case:

5 5 2 3 4 1

4 4 2 5 1 3

M1 = 2 M2 = 1 3 2 4 5 M3 =
3 3 1 4 2 5

1 2 5 3 4 1

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j.

b.	 Describe the use of this set of tables to perform encryption and decryption
between two users.

c.	 Argue that this is a secure scheme.
	 3.14	 Perform encryption and decryption using the RSA algorithm (Figure 3.10) for the

following:
a.	 p = 3; q = 11, e = 7; M = 2
b.	 p = 5; q = 11, e = 3; M = 5
c.	 p = 7; q = 11, e = 17; M = 2
d.	 p = 11; q = 13, e = 11; M = 3
e.	 p = 17; q = 11, e = 7; M = 88
Hint: Decryption is not as hard as you think; use some finesse.

	 3.15	 In a public-key system using RSA, you intercept the ciphertext C = 16 sent to a user
whose public key is e = 6, n = 40. What is the plaintext M?

M03_STAL4855_06_GE_C03.indd 116 8/29/16 6:20 PM

3.7 / Key Terms, Review Questions, and Problems  117

	 3.16	 In an RSA system, the public key of a given user is e = 7, n = 137. What is the
private key of this user?

	 3.17	 Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have
the private key. Assume n = pq, e is the public key. Suppose also someone tells us
they know one of the plaintext blocks has a common factor with n. Does this help us
in any way?

	 3.18	 Show how RSA can be represented by matrices M1, M2, and M3 of Problem 3.4.
	 3.19	 Consider the following scheme.

1. 	 Pick an odd number, E.
2. 	� Pick two prime numbers, P and Q, where (P - 1)(Q - 1) is relatively prime to E.
3. 	 Multiply P and Q to get N.

5. 	 Calculate D =
(P - 1)(Q - 1)(E + 1) + 1

E

Is this scheme equivalent to RSA? Show why or why not.
	 3.20	 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the

factorization cannot be found in a reasonable amount of time. Suppose Alice sends
a message to Bob by representing each alphabetic character as an integer between
0 and 25 (A S 0, c , Z S 25), and then encrypting each number separately using
RSA with large e and large n. Is this method secure? If not, describe the most effi-
cient attack against this encryption method.

	 3.21	 Consider a Diffie–Hellman scheme with a common prime q = 353 and a primitive
root a = 3.
a.	 If user A has public key YA = 40, what is A’s private key XA?
b.	 If user B has public key YB = 248, what is the shared secret key K?

M03_STAL4855_06_GE_C03.indd 117 8/29/16 6:20 PM

This page intentionally left blank

A01_STAL4855_06_GE_FM.indd 4 12/19/16 8:49 PM

119

4.1	 Remote User Authentication Principles

The NIST Model for Electronic User Authentication
Means of Authentication

4.2	 Symmetric Key Distribution Using Symmetric Encryption

4.3	 Kerberos

Kerberos Version 4
Kerberos Version 5

4.4	 Key Distribution Using Asymmetric Encryption

Public-Key Certificates
Public-Key Distribution of Secret Keys

4.5	 X.509 Certificates

Certificates
X.509 Version 3

4.6	 Public-Key Infrastructure

PKIX Management Functions
PKIX Management Protocols

4.7	 Federated Identity Management

Identity Management
Identity Federation

4.8	 Key Terms, Review Questions, and Problems

Chapter

Key Distribution and User
Authentication

Part Two: Network Security Applications

M04_STAL4855_06_GE_C04.indd 119 8/29/16 1:25 PM

120   chapter 4 / Key Distribution and User Authentication

This chapter covers two important related concepts. First is the complex topic of cryp-
tographic key distribution, involving cryptographic, protocol, and management con-
siderations. This chapter gives the reader a feel for the issues involved and provides a
broad survey of the various aspects of key management and distribution.

This chapter also examines some of the authentication functions that have been
developed to support network-based user authentication. The chapter includes a detail
discussion of one of the earliest and also one of the most widely used key distribution
and user authentication services: Kerberos. Next, the chapter looks at key distribution
schemes that rely on asymmetric encryption. This is followed by a discussion of X.509
certificates and public-key infrastructure. Finally, the concept of federated identity
management is introduced.

	 4.1	 Remote User Authentication Principles

In most computer security contexts, user authentication is the fundamental build-
ing block and the primary line of defense. User authentication is the basis for most
types of access control and for user accountability. RFC 4949 (Internet Security
Glossary) defines user authentication as the process of verifying an identity claimed
by or for a system entity. This process consists of two steps:

■■ Identification step: Presenting an identifier to the security system. (Identifiers
should be assigned carefully, because authenticated identities are the basis for
other security services, such as access control service.)

■■ Verification step: Presenting or generating authentication information that
corroborates the binding between the entity and the identifier.

For example, user Alice Toklas could have the user identifier ABTOKLAS.
This information needs to be stored on any server or computer system that Alice
wishes to use and could be known to system administrators and other users. A typi-
cal item of authentication information associated with this user ID is a password,

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Understand the issues involved in the use of symmetric encryption to
distribute symmetric keys.

◆◆ Give a presentation on Kerberos.

◆◆ Explain the differences between versions 4 and 5 of Kerberos.

◆◆ Understand the issues involved in the use of asymmetric encryption to
distribute symmetric keys.

◆◆ List and explain the elements in an X.509 certificate.

◆◆ Present an overview of public-key infrastructure concepts.

◆◆ Understand the need for a federated identity management system.

M04_STAL4855_06_GE_C04.indd 120 8/29/16 1:25 PM

4.1 / Remote User Authentication Principles  121

which is kept secret (known only to Alice and to the system). If no one is able
to obtain or guess Alice’s password, then the combination of Alice’s user ID and
password enables administrators to set up Alice’s access permissions and audit her
activity. Because Alice’s ID is not secret, system users can send her e-mail, but
because her password is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed iden-
tity to the system; user authentication is the means of establishing the validity of
the claim. Note that user authentication is distinct from message authentication. As
defined in Chapter 3, message authentication is a procedure that allows communicat-
ing parties to verify that the contents of a received message have not been altered and
that the source is authentic. This chapter is concerned solely with user authentication.

The NIST Model for Electronic User Authentication

NIST SP 800-63-2 (Electronic Authentication Guideline, August 2013) defines elec-
tronic user authentication as the process of establishing confidence in user identities
that are presented electronically to an information system. Systems can use the authen-
ticated identity to determine if the authenticated individual is authorized to perform
particular functions, such as database transactions or access to system resources. In
many cases, the authentication and transaction or other authorized function take
place across an open network such as the Internet. Equally, authentication and subse-
quent authorization can take place locally, such as across a local area network.

SP 800-63-2 defines a general model for user authentication that involves
a number of entities and procedures. We discuss this model with reference to
Figure 4.1.

The initial requirement for performing user authentication is that the user must
be registered with the system. The following is a typical sequence for registration. An
applicant applies to a registration authority (RA) to become a subscriber of a cre-
dential service provider (CSP). In this model, the RA is a trusted entity that estab-
lishes and vouches for the identity of an applicant to a CSP. The CSP then engages

Figure 4.1  The NIST SP 800-63-2 E-Authentication Architectural Model

Registration
authority (RA)

Registration, credential issuance,
and maintenance

E-Authentication using
token and credential

Identity proo�ng
User registration

Token, cr
edentia

l

Registr
atio

n/iss
uance

Authenticated session

Authenticated protocol

Exchange

Authenticated
assertion

Registration
Con�rmation

Token/credential
Validation

Relying
party (RP)

Veri�er

Subscriber/
claimant

Credential
service

provider (RA)

M04_STAL4855_06_GE_C04.indd 121 8/29/16 1:25 PM

122   chapter 4 / Key Distribution and User Authentication

in an exchange with the subscriber. Depending on the details of the overall authen-
tication system, the CSP issues some sort of electronic credential to the subscriber.
The credential is a data structure that authoritatively binds an identity and additional
attributes to a token possessed by a subscriber, and can be verified when presented
to the verifier in an authentication transaction. The token could be an encryption
key or an encrypted password that identifies the subscriber. The token may be issued
by the CSP, generated directly by the subscriber, or provided by a third party. The
token and credential may be used in subsequent authentication events.

Once a user is registered as a subscriber, the actual authentication process can
take place between the subscriber and one or more systems that perform authen-
tication and, subsequently, authorization. The party to be authenticated is called a
claimant and the party verifying that identity is called a verifier. When a claimant
successfully demonstrates possession and control of a token to a verifier through an
authentication protocol, the verifier can verify that the claimant is the subscriber
named in the corresponding credential. The verifier passes on an assertion about the
identity of the subscriber to the relying party (RP). That assertion includes identity
information about a subscriber, such as the subscriber name, an identifier assigned
at registration, or other subscriber attributes that were verified in the registration
process. The RP can use the authenticated information provided by the verifier to
make access control or authorization decisions.

An implemented system for authentication will differ from or be more com-
plex than this simplified model, but the model illustrates the key roles and functions
needed for a secure authentication system.

Means of Authentication

There are four general means of authenticating a user’s identity, which can be used
alone or in combination:

■■ Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

■■ Something the individual possesses: Examples include cryptographic keys,
electronic keycards, smart cards, and physical keys. This type of authenticator
is referred to as a token.

■■ Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

■■ Something the individual does (dynamic biometrics): Examples include
recognition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure
user authentication. However, each method has problems. An adversary may be
able to guess or steal a password. Similarly, an adversary may be able to forge or
steal a token. A user may forget a password or lose a token. Furthermore, there
is a significant administrative overhead for managing password and token infor-
mation on systems and securing such information on systems. With respect to bio-
metric authenticators, there are a variety of problems, including dealing with false
positives and false negatives, user acceptance, cost, and convenience. For network-
based user authentication, the most important methods involve cryptographic keys
and something the individual knows, such as a password.

M04_STAL4855_06_GE_C04.indd 122 8/29/16 1:25 PM

4.2 / Symmetric Key Distribution Using Symmetric Encryption  123

	 4.2	S ymmetric Key Distribution Using
Symmetric Encryption

For symmetric encryption to work, the two parties to an exchange must share the
same key, and that key must be protected from access by others. Furthermore, fre-
quent key changes are usually desirable to limit the amount of data compromised if
an attacker learns the key. Therefore, the strength of any cryptographic system rests
with the “key distribution technique,” a term that refers to the means of delivering
a key to two parties that wish to exchange data, without allowing others to see the
key. Key distribution can be achieved in a number of ways. For two parties A and B,
there are the following options:

1.	 A key could be selected by A and physically delivered to B.

2.	 A third party could select the key and physically deliver it to A and B.

3.	 If A and B have previously and recently used a key, one party could transmit
the new key to the other, using the old key to encrypt the new key.

4.	 If A and B each have an encrypted connection to a third party C, C could
deliver a key on the encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is
a reasonable requirement, because each link encryption device is only going to be
exchanging data with its partner on the other end of the link. However, for end-to-
end encryption over a network, manual delivery is awkward. In a distributed sys-
tem, any given host or terminal may need to engage in exchanges with many other
hosts and terminals over time. Thus, each device needs a number of keys supplied
dynamically. The problem is especially difficult in a wide-area distributed system.

Option 3 is a possibility for either link encryption or end-to-end encryption, but
if an attacker ever succeeds in gaining access to one key, then all subsequent keys are
revealed. Even if frequent changes are made to the link encryption keys, these should
be done manually. To provide keys for end-to-end encryption, option 4 is preferable.

For option 4, two kinds of keys are used:

■■ Session key: When two end systems (hosts, terminals, etc.) wish to communi-
cate, they establish a logical connection (e.g., virtual circuit). For the duration of
that logical connection, called a session, all user data are encrypted with a one-
time session key. At the conclusion of the session the session key is destroyed.

■■ Permanent key: A permanent key is a key used between entities for the
purpose of distributing session keys.

A necessary element of option 4 is a key distribution center (KDC). The KDC
determines which systems are allowed to communicate with each other. When
permission is granted for two systems to establish a connection, the key distribution
center provides a one-time session key for that connection.

In general terms, the operation of a KDC proceeds as follows:

1.	 When host A wishes to set up a connection to host B, it transmits a
connection-request packet to the KDC. The communication between A and
the KDC is encrypted using a master key shared only by A and the KDC.

M04_STAL4855_06_GE_C04.indd 123 8/29/16 1:25 PM

124   chapter 4 / Key Distribution and User Authentication

2.	 If the KDC approves the connection request, it generates a unique one-time
session key. It encrypts the session key using the permanent key it shares with
A and delivers the encrypted session key to A. Similarly, it encrypts the ses-
sion key using the permanent key it shares with B and delivers the encrypted
session key to B.

3.	 A and B can now set up a logical connection and exchange messages and
data, all encrypted using the temporary session key.

The automated key distribution approach provides the flexibility and dynamic
characteristics needed to allow a number of users to access a number of servers and
for the servers to exchange data with each other. The most widely used application
that implements this approach is Kerberos, described in the next section.

	 4.3	 Kerberos

Kerberos is a key distribution and user authentication service developed at MIT.
The problem that Kerberos addresses is this: Assume an open distributed environ-
ment in which users at workstations wish to access services on servers distributed
throughout the network. We would like for servers to be able to restrict access to
authorized users and to be able to authenticate requests for service. In this envi-
ronment, a workstation cannot be trusted to identify its users correctly to network
services. In particular, the following three threats exist:

1.	 A user may gain access to a particular workstation and pretend to be another
user operating from that workstation.

2.	 A user may alter the network address of a workstation so that the requests
sent from the altered workstation appear to come from the impersonated
workstation.

3.	 A user may eavesdrop on exchanges and use a replay attack to gain entrance
to a server or to disrupt operations.

In any of these cases, an unauthorized user may be able to gain access to services
and data that he or she is not authorized to access. Rather than building elaborate
authentication protocols at each server, Kerberos provides a centralized authentica-
tion server whose function is to authenticate users to servers and servers to users.
Kerberos relies exclusively on symmetric encryption, making no use of public-key
encryption.

Two versions of Kerberos are in use. Version 4 [MILL88, STEI88] implemen-
tations still exist, although this version is being phased out. Version 5 [KOHL94]
corrects some of the security deficiencies of version 4 and has been issued as a pro-
posed Internet Standard (RFC 4120).

Because of the complexity of Kerberos, it is best to start with a description
of version 4. This enables us to see the essence of the Kerberos strategy without
considering some of the details required to handle subtle security threats. Then, we
examine version 5.

M04_STAL4855_06_GE_C04.indd 124 8/29/16 1:25 PM

4.3 / Kerberos  125

Kerberos Version 4

Version 4 of Kerberos makes use of DES, in a rather elaborate protocol, to provide
the authentication service. Viewing the protocol as a whole, it is difficult to see the
need for the many elements contained therein. Therefore, we adopt a strategy used
by Bill Bryant [BRYA88] and build up to the full protocol by looking first at sev-
eral hypothetical dialogues. Each successive dialogue adds additional complexity to
counter security vulnerabilities revealed in the preceding dialogue.

After examining the protocol, we look at some other aspects of version 4.

A Simple Authentication Dialogue  In an unprotected network environment,
any client can apply to any server for service. The obvious security risk is that of
impersonation. An opponent can pretend to be another client and obtain unauthor-
ized privileges on server machines. To counter this threat, servers must be able to
confirm the identities of clients who request service. Each server can be required to
undertake this task for each client/server interaction, but in an open environment,
this places a substantial burden on each server.

An alternative is to use an authentication server (AS) that knows the pass-
words of all users and stores these in a centralized database. In addition, the AS
shares a unique secret key with each server. These keys have been distributed physi-
cally or in some other secure manner. Consider the following hypothetical
dialogue:1

(1) C S AS: IDC }PC } IDV

(2) AS S C: Ticket

(3) C S V: IDC }Ticket

Ticket = E(Kv, [IDC }ADC } IDV])

where

 C = client

 AS = authentication server

 V = server

 IDC = identifier of user on C

 IDV = identifier of V

 PC = password of user on C

 ADC = network address of C
 Kv = secret encryption key shared by AS and V

In this scenario, the user logs on to a workstation and requests access to server V.
The client module C in the user’s workstation requests the user’s password and

1The portion to the left of the colon indicates the sender and receiver, the portion to the right indicates
the contents of the message, and the symbol } indicates concatenation.

M04_STAL4855_06_GE_C04.indd 125 8/29/16 1:25 PM

126   chapter 4 / Key Distribution and User Authentication

then sends a message to the AS that includes the user’s ID, the server’s ID, and
the user’s password. The AS checks its database to see if the user has supplied
the proper password for this user ID and whether this user is permitted access to
server V. If both tests are passed, the AS accepts the user as authentic and must
now convince the server that this user is authentic. To do so, the AS creates a ticket
that contains the user’s ID and network address and the server’s ID. This ticket is
encrypted using the secret key shared by the AS and this server. This ticket is then
sent back to C. Because the ticket is encrypted, it cannot be altered by C or by an
opponent.

With this ticket, C can now apply to V for service. C sends a message to V con-
taining C’s ID and the ticket. V decrypts the ticket and verifies that the user ID in
the ticket is the same as the unencrypted user ID in the message. If these two match,
the server considers the user authenticated and grants the requested service.

Each of the ingredients of message (3) is significant. The ticket is encrypted to
prevent alteration or forgery. The server’s ID (IDV) is included in the ticket so that
the server can verify that it has decrypted the ticket properly. IDC is included in the
ticket to indicate that this ticket has been issued on behalf of C. Finally, ADC serves
to counter the following threat. An opponent could capture the ticket transmitted
in message (2), then use the name IDC, and transmit a message of form (3) from
another workstation. The server would receive a valid ticket that matches the user
ID and grant access to the user on that other workstation. To prevent this attack,
the AS includes in the ticket the network address from which the original request
came. Now the ticket is valid only if it is transmitted from the same workstation that
initially requested the ticket.

A More Secure Authentication Dialogue  Although the foregoing scenario
solves some of the problems of authentication in an open network environment,
problems remain. Two in particular stand out. First, we would like to minimize the
number of times that a user has to enter a password. Suppose each ticket can be
used only once. If user C logs on to a workstation in the morning and wishes to
check his or her mail at a mail server, C must supply a password to get a ticket for
the mail server. If C wishes to check the mail several times during the day, each
attempt requires reentering the password. We can improve matters by saying that
tickets are reusable. For a single logon session, the workstation can store the mail-
server ticket after it is received and use it on behalf of the user for multiple accesses
to the mail server.

However, under this scheme, it remains the case that a user would need a new
ticket for every different service. If a user wished to access a print server, a mail
server, a file server, and so on, the first instance of each access would require a new
ticket and hence require the user to enter the password.

The second problem is that the earlier scenario involved a plaintext transmis-
sion of the password [message (1)]. An eavesdropper could capture the password
and use any service accessible to the victim.

To solve these additional problems, we introduce a scheme for avoiding plain-
text passwords and a new server, known as the ticket-granting server (TGS). The
new (but still hypothetical) scenario is as follows.

M04_STAL4855_06_GE_C04.indd 126 8/29/16 1:25 PM

4.3 / Kerberos  127

Once per user logon session:

(1) C S AS: IDC } IDtgs

(2) AS S C: E(Kc, Tickettgs)

Once per type of service:

(3) C S TGS: IDC } IDV }Tickettgs

(4) TGS S C: Ticketv

Once per service session:

(5) C S V: IDC }Ticketv

Tickettgs = E(Ktgs, [IDC }ADC } IDtgs }TS1 }Lifetime1])

Ticketv = E(Kv, [IDC }ADC } IDv }TS2 }Lifetime2])

The new service, TGS, issues tickets to users who have been authenticated to
AS. Thus, the user first requests a ticket-granting ticket (Tickettgs) from the AS. The
client module in the user workstation saves this ticket. Each time the user requires
access to a new service, the client applies to the TGS, using the ticket to authenti-
cate itself. The TGS then grants a ticket for the particular service. The client saves
each service-granting ticket and uses it to authenticate its user to a server each time
a particular service is requested. Let us look at the details of this scheme:

1.	 The client requests a ticket-granting ticket on behalf of the user by sending
its user’s ID to the AS, together with the TGS ID, indicating a request to use
the TGS service.

2.	 The AS responds with a ticket that is encrypted with a key that is derived
from the user’s password (KC), which is already stored at the AS. When this
response arrives at the client, the client prompts the user for his or her pass-
word, generates the key, and attempts to decrypt the incoming message. If the
correct password is supplied, the ticket is successfully recovered.

Because only the correct user should know the password, only the correct user
can recover the ticket. Thus, we have used the password to obtain credentials from
Kerberos without having to transmit the password in plaintext. The ticket itself
consists of the ID and network address of the user and the ID of the TGS. This
corresponds to the first scenario. The idea is that the client can use this ticket to
request multiple service-granting tickets. So the ticket-granting ticket is to be reus-
able. However, we do not wish an opponent to be able to capture the ticket and
use it. Consider the following scenario: An opponent captures the login ticket and
waits until the user has logged off his or her workstation. Then the opponent either
gains access to that workstation or configures his workstation with the same net-
work address as that of the victim. The opponent would be able to reuse the ticket
to spoof the TGS. To counter this, the ticket includes a timestamp, indicating the
date and time at which the ticket was issued, and a lifetime, indicating the length
of time for which the ticket is valid (e.g., eight hours). Thus, the client now has a
reusable ticket and need not bother the user for a password for each new service

M04_STAL4855_06_GE_C04.indd 127 8/29/16 1:25 PM

128   chapter 4 / Key Distribution and User Authentication

request. Finally, note that the ticket-granting ticket is encrypted with a secret key
known only to the AS and the TGS. This prevents alteration of the ticket. The ticket
is reencrypted with a key based on the user’s password. This assures that the ticket
can be recovered only by the correct user, providing the authentication.

Now that the client has a ticket-granting ticket, access to any server can be
obtained with steps 3 and 4.

3.	 The client requests a service-granting ticket on behalf of the user. For this
purpose, the client transmits a message to the TGS containing the user’s ID,
the ID of the desired service, and the ticket-granting ticket.

4.	 The TGS decrypts the incoming ticket using a key shared only by the AS
and the TGS (Ktgs) and verifies the success of the decryption by the presence
of its ID. It checks to make sure that the lifetime has not expired. Then it
compares the user ID and network address with the incoming information to
authenticate the user. If the user is permitted access to the server V, the TGS
issues a ticket to grant access to the requested service.

The service-granting ticket has the same structure as the ticket-granting ticket.
Indeed, because the TGS is a server, we would expect that the same elements are
needed to authenticate a client to the TGS and to authenticate a client to an appli-
cation server. Again, the ticket contains a timestamp and lifetime. If the user wants
access to the same service at a later time, the client can simply use the previously
acquired service-granting ticket and need not bother the user for a password. Note
that the ticket is encrypted with a secret key (Kv) known only to the TGS and the
server, preventing alteration.

Finally, with a particular service-granting ticket, the client can gain access to
the corresponding service with step 5.

5.	 The client requests access to a service on behalf of the user. For this purpose,
the client transmits a message to the server containing the user’s ID and the ser-
vice-granting ticket. The server authenticates by using the contents of the ticket.

This new scenario satisfies the two requirements of only one password query
per user session and protection of the user password.

The Version 4 Authentication Dialogue  Although the foregoing scenario
enhances security compared to the first attempt, two additional problems remain.
The heart of the first problem is the lifetime associated with the ticket-granting
ticket. If this lifetime is very short (e.g., minutes), then the user will be repeatedly
asked for a password. If the lifetime is long (e.g., hours), then an opponent has a
greater opportunity for replay. An opponent could eavesdrop on the network and
capture a copy of the ticket-granting ticket and then wait for the legitimate user to
log out. Then the opponent could forge the legitimate user’s network address and
send the message of step (3) to the TGS. This would give the opponent unlimited
access to the resources and files available to the legitimate user.

Similarly, if an opponent captures a service-granting ticket and uses it before it
expires, the opponent has access to the corresponding service.

Thus, we arrive at an additional requirement. A network service (the TGS or
an application service) must be able to prove that the person using a ticket is the
same person to whom that ticket was issued.

M04_STAL4855_06_GE_C04.indd 128 8/29/16 1:25 PM

4.3 / Kerberos  129

(1) C u AS IDc } IDtgs }TS1

(2) AS u C E(Kc, [Kc,tgs } IDtgs }TS2 }Lifetime2 }Tickettgs])

   Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C u TGS IDv }Tickettgs }Authenticatorc

(4) TGS u C E(Kc, tgs, [Kc, v } IDv }TS4 }Ticketv])

Tickettgs = E(Ktgs, [Kc, tgs } IDC }ADC } IDtgs }TS2 }Lifetime2])

Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, tgs, [IDC }ADC }TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C u V Ticketv }Authenticatorc

(6) V u C E(Kc, v, [TS5 + 1])(for mutual authentication)

Ticketv = E(Kv, [Kc, v } IDC }ADC } IDv }TS4 }Lifetime4])

Authenticatorc = E(Kc, v, [IDC }ADC }TS5])

(c) Client/Server Authentication Exchange to obtain service

Table 4.1  Summary of Kerberos Version 4 Message Exchanges

The second problem is that there may be a requirement for servers to authenti-
cate themselves to users. Without such authentication, an opponent could sabotage
the configuration so that messages to a server were directed to another location.
The false server then would be in a position to act as a real server, capture any
information from the user, and deny the true service to the user.

We examine these problems in turn and refer to Table 4.1, which shows the
actual Kerberos protocol. Figure 4.2 provides simplified overview.

First, consider the problem of captured ticket-granting tickets and the need
to determine that the ticket presenter is the same as the client for whom the ticket
was issued. The threat is that an opponent will steal the ticket and use it before it
expires. To get around this problem, let us have the AS provide both the client and
the TGS with a secret piece of information in a secure manner. Then the client can
prove its identity to the TGS by revealing the secret information, again in a secure
manner. An efficient way of accomplishing this is to use an encryption key as the
secure information; this is referred to as a session key in Kerberos.

Table 4.1a shows the technique for distributing the session key. As before, the
client sends a message to the AS requesting access to the TGS. The AS responds
with a message, encrypted with a key derived from the user’s password (KC), that
contains the ticket. The encrypted message also contains a copy of the session key,
KC,tgs, where the subscripts indicate that this is a session key for C and TGS. Because
this session key is inside the message encrypted with KC, only the user’s client can
read it. The same session key is included in the ticket, which can be read only by
the TGS. Thus, the session key has been securely delivered to both C and the TGS.

Note that several additional pieces of information have been added to this
first phase of the dialogue. Message (1) includes a timestamp, so that the AS knows
that the message is timely. Message (2) includes several elements of the ticket in a

M04_STAL4855_06_GE_C04.indd 129 8/29/16 1:25 PM

130   chapter 4 / Key Distribution and User Authentication

form accessible to C. This enables C to confirm that this ticket is for the TGS and to
learn its expiration time.

Armed with the ticket and the session key, C is ready to approach the TGS.
As before, C sends the TGS a message that includes the ticket plus the ID of the
requested service [message (3) in Table 4.1b]. In addition, C transmits an authentica-
tor, which includes the ID and address of C’s user and a timestamp. Unlike the ticket,
which is reusable, the authenticator is intended for use only once and has a very short
lifetime. The TGS can decrypt the ticket with the key that it shares with the AS. This
ticket indicates that user C has been provided with the session key KC,tgs. In effect,
the ticket says, “Anyone who uses KC,tgs must be C.” The TGS uses the session key to
decrypt the authenticator. The TGS can then check the name and address from the
authenticator with that of the ticket and with the network address of the incoming
message. If all match, then the TGS is assured that the sender of the ticket is indeed
the ticket’s real owner. In effect, the authenticator says, “At time TS3, I hereby use
KC,tgs.” Note that the ticket does not prove anyone’s identity but is a way to distribute
keys securely. It is the authenticator that proves the client’s identity. Because the

Figure 4.2  Overview of Kerberos

Authentication
server

Ticket-
granting

server (TGS)

Host/
application

server

Request tic
ket-

granting ticket

Once per
user logon
session

1. User logs on to
workstation and
requests service on host

3. Workstation prompts
user for password to decrypt
incoming message, then
send ticket and
authenticator that contains
user’s name, network
address, and time to TGS

Ticket + session key

Request service-

granting ticket

Ticket + session key

Once per
type of service

4. TGS decrypts ticket and
authenticator, veri�es request, and
then creates ticket for requested
application server.

Kerberos

5. Workstation sends
ticket and authenticator
to host

6. Host veri�es that
ticket and authenticator
match, and then grants access
to service. If mutual
authentication is
required, server returns
an authenticator

Request service
Provide server

authenticator
Once per
service session

2. AS veri�es user’s access right in
database, and creates ticket-granting ticket
and session key. Results are encrypted
using key derived from user’s password

M04_STAL4855_06_GE_C04.indd 130 8/29/16 1:25 PM

4.3 / Kerberos  131

authenticator can be used only once and has a short lifetime, the threat of an oppo-
nent stealing both the ticket and the authenticator for presentation later is countered.

The reply from the TGS in message (4) follows the form of message (2). The
message is encrypted with the session key shared by the TGS and C and includes
a session key to be shared between C and the server V, the ID of V, and the time-
stamp of the ticket. The ticket itself includes the same session key.

C now has a reusable service-granting ticket for V. When C presents this ticket,
as shown in message (5), it also sends an authenticator. The server can decrypt the
ticket, recover the session key, and decrypt the authenticator.

If mutual authentication is required, the server can reply as shown in message
(6) of Table 4.1. The server returns the value of the timestamp from the authentica-
tor, incremented by 1, and encrypted in the session key. C can decrypt this message
to recover the incremented timestamp. Because the message was encrypted by the
session key, C is assured that it could have been created only by V. The contents of
the message assure C that this is not a replay of an old reply.

Finally, at the conclusion of this process, the client and server share a secret
key. This key can be used to encrypt future messages between the two or to exchange
a new random session key for that purpose.

Figure 4.3 illustrates the Kerberos exchanges among the parties. Table 4.2
summarizes the justification for each of the elements in the Kerberos protocol.

Figure 4.3  Kerberos Exchanges

Client

Client authentication
IDc || IDtgs || TS1

Tickettgs, server ID, and client authentication
IDv || Tickettgs || Authenticatorc

Shared key and ticket
E(Kc,tgs, [Kc,v || IDv || TS4 || Ticketv])

Ticketv and client authentication
Ticketv || Authenticatorc

Service granted
E(Kc,v, [TS5 + 1])

Shared key and ticket
E(Kc, [Kc,tgs || IDtgs || TS2 ||

Lifetime2 || Tickettgs])

Authentication
server (AS)

Ticket-granting
server (AS)

Service
provider

M04_STAL4855_06_GE_C04.indd 131 8/29/16 1:25 PM

132   chapter 4 / Key Distribution and User Authentication

Message (1) Client requests ticket-granting ticket.

IDC Tells AS identity of user from this client.

IDtgs Tells AS that user requests access to TGS.

TS1 Allows AS to verify that client’s clock is synchronized with that of AS.

Message (2) AS returns ticket-granting ticket.

Kc Encryption is based on user’s password, enabling AS and client to verify
password, and protecting contents of message (2).

Kc,tgs Copy of session key accessible to client created by AS to permit secure
exchange between client and TGS without requiring them to share a
permanent key.

IDtgs Confirms that this ticket is for the TGS.

TS2 Informs client of time this ticket was issued.

Lifetime2 Informs client of the lifetime of this ticket.

Tickettgs Ticket to be used by client to access TGS.

(a) Authentication Service Exchange

Message (3) Client requests service-granting ticket.

IDV Tells TGS that user requests access to server V.

Tickettgs Assures TGS that this user has been authenticated by AS.

Authenticatorc Generated by client to validate ticket.

Message (4) TGS returns service-granting ticket.

Kc,tgs Key shared only by C and TGS protects contents of message (4).

Kc,v Copy of session key accessible to client created by TGS to permit secure
exchange between client and server without requiring them to share
a permanent key.

IDV Confirms that this ticket is for server V.

TS4 Informs client of time this ticket was issued.

TicketV Ticket to be used by client to access server V.

Tickettgs Reusable so that user does not have to reenter password.

Ktgs Ticket is encrypted with key known only to AS and TGS, to prevent
tampering.

Kc,tgs Copy of session key accessible to TGS used to decrypt authenticator, thereby
authenticating ticket.

IDC Indicates the rightful owner of this ticket.

ADC Prevents use of ticket from workstation other than one that initially requested
the ticket.

IDtgs Assures server that it has decrypted ticket properly.

TS2 Informs TGS of time this ticket was issued.

Lifetime2 Prevents replay after ticket has expired.

Authenticatorc Assures TGS that the ticket presenter is the same as the client for whom the
ticket was issued has very short lifetime to prevent replay.

Table 4.2  Rationale for the Elements of the Kerberos Version 4 Protocol

M04_STAL4855_06_GE_C04.indd 132 8/29/16 1:25 PM

4.3 / Kerberos  133

Kc,tgs Authenticator is encrypted with key known only to client and TGS, to prevent
tampering.

IDC Must match ID in ticket to authenticate ticket.

ADC Must match address in ticket to authenticate ticket.

TS3 Informs TGS of time this authenticator was generated.

(b) Ticket-Granting Service Exchange

Message (5) Client requests service.

TicketV Assures server that this user has been authenticated by AS.

Authenticatorc Generated by client to validate ticket.

Message (6) Optional authentication of server to client.

Kc,v Assures C that this message is from V.

TS5 + 1 Assures C that this is not a replay of an old reply.

Ticketv Reusable so that client does not need to request a new ticket from TGS for
each access to the same server.

Kv Ticket is encrypted with key known only to TGS and server, to prevent
tampering.

Kc,v Copy of session key accessible to client; used to decrypt authenticator, thereby
authenticating ticket.

IDC Indicates the rightful owner of this ticket.

ADC Prevents use of ticket from workstation other than one that initially requested
the ticket.

IDV Assures server that it has decrypted ticket properly.

TS4 Informs server of time this ticket was issued.

Lifetime4 Prevents replay after ticket has expired.

Authenticatorc Assures server that the ticket presenter is the same as the client for whom the
ticket was issued; has very short lifetime to prevent replay.

Kc,v Authenticator is encrypted with key known only to client and server, to
prevent tampering.

IDC Must match ID in ticket to authenticate ticket.

ADc Must match address in ticket to authenticate ticket.

TS5 Informs server of time this authenticator was generated.

(c) Client/Server Authentication Exchange

Kerberos Realms and Multiple Kerberi  A full-service Kerberos environment
consisting of a Kerberos server, a number of clients, and a number of application
servers requires the following:

1.	 The Kerberos server must have the user ID and hashed passwords of all par-
ticipating users in its database. All users are registered with the Kerberos
server.

2.	 The Kerberos server must share a secret key with each server. All servers are
registered with the Kerberos server.

M04_STAL4855_06_GE_C04.indd 133 8/29/16 1:25 PM

134   chapter 4 / Key Distribution and User Authentication

Such an environment is referred to as a Kerberos realm. The concept of realm
can be explained as follows. A Kerberos realm is a set of managed nodes that share
the same Kerberos database. The Kerberos database resides on the Kerberos mas-
ter computer system, which should be kept in a physically secure room. A read-only
copy of the Kerberos database might also reside on other Kerberos computer sys-
tems. However, all changes to the database must be made on the master computer
system. Changing or accessing the contents of a Kerberos database requires the
Kerberos master password. A related concept is that of a Kerberos principal, which
is a service or user that is known to the Kerberos system. Each Kerberos principal is
identified by its principal name. Principal names consist of three parts: a service or
user name, an instance name, and a realm name.

Networks of clients and servers under different administrative organizations
typically constitute different realms. That is, it generally is not practical or does not
conform to administrative policy to have users and servers in one administrative
domain registered with a Kerberos server elsewhere. However, users in one realm
may need access to servers in other realms, and some servers may be willing to pro-
vide service to users from other realms, provided that those users are authenticated.

Kerberos Version 5

Kerberos version 5 is specified in RFC 4120 and provides a number of improve-
ments over version 4 [KOHL94]. To begin, we provide an overview of the changes
from version 4 to version 5 and then look at the version 5 protocol.

Differences between Versions 4 and 5  Version 5 is intended to address the
limitations of version 4 in two areas: environmental shortcomings and technical
deficiencies. We briefly summarize the improvements in each area. Kerberos version
4 did not fully address the need to be of general purpose. This led to the following
environmental shortcomings.

1.	 Encryption system dependence: Version 4 requires the use of DES. Export
restriction on DES as well as doubts about the strength of DES were thus of
concern. In version 5, ciphertext is tagged with an encryption-type identifier so
that any encryption technique may be used. Encryption keys are tagged with
a type and a length, allowing the same key to be used in different algorithms
and allowing the specification of different variations on a given algorithm.

2.	 Internet protocol dependence: Version 4 requires the use of Internet Protocol
(IP) addresses. Other address types, such as the ISO network address, are not
accommodated. Version 5 network addresses are tagged with type and length,
allowing any network address type to be used.

3.	 Message byte ordering: In version 4, the sender of a message employs a byte
ordering of its own choosing and tags the message to indicate least significant
byte in lowest address or most significant byte in lowest address. This tech-
nique works but does not follow established conventions. In version 5, all mes-
sage structures are defined using Abstract Syntax Notation One (ASN.1) and
Basic Encoding Rules (BER), which provide an unambiguous byte ordering.

4.	 Ticket lifetime: Lifetime values in version 4 are encoded in an 8-bit quantity
in units of five minutes. Thus, the maximum lifetime that can be expressed

M04_STAL4855_06_GE_C04.indd 134 8/29/16 1:25 PM

4.3 / Kerberos  135

is 28 * 5 = 1280 minutes (a little over 21 hours). This may be inadequate
for some applications (e.g., a long-running simulation that requires valid
Kerberos credentials throughout execution). In version 5, tickets include an
explicit start time and end time, allowing tickets with arbitrary lifetimes.

5.	 Authentication forwarding: Version 4 does not allow credentials issued to
one client to be forwarded to some other host and used by some other client.
This capability would enable a client to access a server and have that server
access another server on behalf of the client. For example, a client issues a
request to a print server that then accesses the client’s file from a file server,
using the client’s credentials for access. Version 5 provides this capability.

6.	 Interrealm authentication: In version 4, interoperability among N realms
requires on the order of N2 Kerberos-to-Kerberos relationships, as described
earlier. Version 5 supports a method that requires fewer relationships, as
described shortly.

Apart from these environmental limitations, there are technical deficiencies
in the version 4 protocol itself. Most of these deficiencies were documented in
[BELL90], and version 5 attempts to address these. The deficiencies are the following.

1.	 Double encryption: Note in Table 4.1 [messages (2) and (4)] that tickets pro-
vided to clients are encrypted twice—once with the secret key of the target
server and then again with a secret key known to the client. The second
encryption is not necessary and is computationally wasteful.

2.	 PCBC encryption: Encryption in version 4 makes use of a nonstandard
mode of DES known as propagating cipher block chaining (PCBC).2 It has
been demonstrated that this mode is vulnerable to an attack involving the
interchange of ciphertext blocks [KOHL89]. PCBC was intended to provide
an integrity check as part of the encryption operation. Version 5 provides
explicit integrity mechanisms, allowing the standard CBC mode to be used
for encryption. In particular, a checksum or hash code is attached to the mes-
sage prior to encryption using CBC.

3.	 Session keys: Each ticket includes a session key that is used by the client to
encrypt the authenticator sent to the service associated with that ticket. In
addition, the session key subsequently may be used by the client and the
server to protect messages passed during that session. However, because the
same ticket may be used repeatedly to gain service from a particular server,
there is the risk that an opponent will replay messages from an old session to
the client or the server. In version 5, it is possible for a client and server to
negotiate a subsession key, which is to be used only for that one connection.
A new access by the client would result in the use of a new subsession key.

4.	 Password attacks: Both versions are vulnerable to a password attack. The mes-
sage from the AS to the client includes material encrypted with a key based
on the client’s password.3 An opponent can capture this message and attempt

2This is described in Appendix F.
3Appendix F describes the mapping of passwords to encryption keys.

M04_STAL4855_06_GE_C04.indd 135 8/29/16 1:25 PM

136   chapter 4 / Key Distribution and User Authentication

to decrypt it by trying various passwords. If the result of a test decryption
is of the proper form, then the opponent has discovered the client’s pass-
word and may subsequently use it to gain authentication credentials from
Kerberos. This is the same type of password attack described in Chapter 10,
with the same kinds of countermeasures being applicable. Version 5 does pro-
vide a mechanism known as preauthentication, which should make password
attacks more difficult, but it does not prevent them.

The Version 5 Authentication Dialogue  Table 4.3 summarizes the basic version
5 dialogue. This is best explained by comparison with version 4 (Table 4.1).

First, consider the authentication service exchange. Message (1) is a client
request for a ticket-granting ticket. As before, it includes the ID of the user and the
TGS. The following new elements are added:

■■ Realm: Indicates realm of user.

■■ Options: Used to request that certain flags be set in the returned ticket.

■■ Times: Used by the client to request the following time settings in the ticket:

from: the desired start time for the requested ticket

till: the requested expiration time for the requested ticket

rtime: requested renew-till time

■■ Nonce: A random value to be repeated in message (2) to assure that the
response is fresh and has not been replayed by an opponent.

(1) C u AS Options } IDc }Realmc } IDtgs }Times }Nonce1

(2) AS u C Realmc } IDC }Tickettgs }E(Kc, [Kc, tgs }Times }Nonce1 }Realmtgs } IDtgs])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C u TGS Options } IDv }Times } }Nonce2 }Tickettgs }Authenticatorc

(4) TGS u C Realmc } IDC }Ticketv }E(Kc,tgs, [Kc,v }Times }Nonce2 }Realmv } IDv])

Tickettgs = E(Ktgs, [Flags }Kc,tgs }Realmc } IDC }ADC }Times])

Ticketv = E(Kv, [Flags }Kc,v }Realmc } IDC }ADC }Times])

Authenticatorc = E(Kc, tgs, [IDC }Realmc }TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C u V Options }Ticketv }Authenticatorc

(6) V u C EKc, v[TS2 }Subkey }Seq#]

Ticketv = E(Kv, [Flags }Kc, v }Realmc } IDC }ADC }Times])

Authenticatorc = E(Kc,v, [IDC }Realmc }TS2 }Subkey }Seq#])

(c) Client/Server Authentication Exchange to obtain service

Table 4.3  Summary of Kerberos Version 5 Message Exchanges

M04_STAL4855_06_GE_C04.indd 136 8/29/16 1:25 PM

4.4 / Key Distribution Using Asymmetric Encryption  137

Message (2) returns a ticket-granting ticket, identifying information for the
client, and a block encrypted using the encryption key based on the user’s password.
This block includes the session key to be used between the client and the TGS, times
specified in message (1), the nonce from message (1), and TGS identifying informa-
tion. The ticket itself includes the session key, identifying information for the client,
the requested time values, and flags that reflect the status of this ticket and the
requested options. These flags introduce significant new functionality to version 5.
For now, we defer a discussion of these flags and concentrate on the overall struc-
ture of the version 5 protocol.

Let us now compare the ticket-granting service exchange for versions 4 and 5.
We see that message (3) for both versions includes an authenticator, a ticket, and
the name of the requested service. In addition, version 5 includes requested times
and options for the ticket and a nonce—all with functions similar to those of mes-
sage (1). The authenticator itself is essentially the same as the one used in version 4.

Message (4) has the same structure as message (2). It returns a ticket plus
information needed by the client, with the information encrypted using the session
key now shared by the client and the TGS.

Finally, for the client/server authentication exchange, several new features
appear in version 5. In message (5), the client may request as an option that mutual
authentication is required. The authenticator includes several new fields:

■■ Subkey: The client’s choice for an encryption key to be used to protect this
specific application session. If this field is omitted, the session key from the
ticket (KC,V) is used.

■■ Sequence number: An optional field that specifies the starting sequence num-
ber to be used by the server for messages sent to the client during this session.
Messages may be sequence numbered to detect replays.

If mutual authentication is required, the server responds with message (6).
This message includes the timestamp from the authenticator. Note that in version 4,
the timestamp was incremented by one. This is not necessary in version 5, because
the nature of the format of messages is such that it is not possible for an opponent
to create message (6) without knowledge of the appropriate encryption keys. The
subkey field, if present, overrides the subkey field, if present, in message (5). The
optional sequence number field specifies the starting sequence number to be used
by the client.

	 4.4	 Key Distribution Using Asymmetric Encryption

One of the major roles of public-key encryption is to address the problem of key
distribution. There are actually two distinct aspects to the use of public-key encryp-
tion in this regard.

■■ The distribution of public keys.

■■ The use of public-key encryption to distribute secret keys.

We examine each of these areas in turn.

M04_STAL4855_06_GE_C04.indd 137 8/29/16 1:25 PM

138   chapter 4 / Key Distribution and User Authentication

Public-Key Certificates

On the face of it, the point of public-key encryption is that the public key is public.
Thus, if there is some broadly accepted public-key algorithm, such as RSA, any
participant can send his or her public key to any other participant or broadcast the
key to the community at large. Although this approach is convenient, it has a major
weakness. Anyone can forge such a public announcement. That is, some user could
pretend to be user A and send a public key to another participant or broadcast such
a public key. Until such time as user A discovers the forgery and alerts other partici-
pants, the forger is able to read all encrypted messages intended for A and can use
the forged keys for authentication.

The solution to this problem is the public-key certificate. In essence, a certifi-
cate consists of a public key plus a user ID of the key owner, with the whole block
signed by a trusted third party. Typically, the third party is a certificate authority
(CA) that is trusted by the user community, such as a government agency or a finan-
cial institution. A user can present his or her public key to the authority in a secure
manner and obtain a certificate. The user can then publish the certificate. Anyone
needing this user’s public key can obtain the certificate and verify that it is valid by
way of the attached trusted signature. Figure 4.4 illustrates the process.

One scheme has become universally accepted for formatting public-key certifi-
cates: the X.509 standard. X.509 certificates are used in most network security appli-
cations, including IP security, secure sockets layer (SSL), and S/MIME—all of which
are discussed in subsequent chapters. X.509 is examined in detail in the next section.

Public-Key Distribution of Secret Keys

With conventional encryption, a fundamental requirement for two parties to com-
municate securely is that they share a secret key. Suppose Bob wants to create a
messaging application that will enable him to exchange e-mail securely with anyone

Figure 4.4  Public-Key Certificate Use

Unsigned certi�cate:
contains user ID,
user’s public key

Signed certi�cate

Hash code of incoming
unsigned certi�cate

Return
signature valid

or not valid
Generate hash

code of unsigned
certi�cate

Generate signature as
a function of hash code
using CA’s private key

H

H

Bob’s ID
information

CA
information

Bob’s public key

G V

Verifty incoming signature
as a function of incoming
hash code using CA’s public key

Use certi�cate to
verify Bob’s public key

Create signed
digital certi�cate

M04_STAL4855_06_GE_C04.indd 138 8/29/16 1:25 PM

4.5 / X.509 Certificates  139

who has access to the Internet or to some other network that the two of them share.
Suppose Bob wants to do this using conventional encryption. With conventional
encryption, Bob and his correspondent, say, Alice, must come up with a way to share
a unique secret key that no one else knows. How are they going to do that? If Alice
is in the next room from Bob, Bob could generate a key and write it down on a piece
of paper or store it on a diskette and hand it to Alice. But if Alice is on the other side
of the continent or the world, what can Bob do? He could encrypt this key using con-
ventional encryption and e-mail it to Alice, but this means that Bob and Alice must
share a secret key to encrypt this new secret key. Furthermore, Bob and everyone
else who uses this new e-mail package faces the same problem with every potential
correspondent: Each pair of correspondents must share a unique secret key.

One approach is the use of Diffie–Hellman key exchange. This approach is
indeed widely used. However, it suffers the drawback that, in its simplest form,
Diffie–Hellman provides no authentication of the two communicating partners.

A powerful alternative is the use of public-key certificates. When Bob wishes
to communicate with Alice, Bob can do the following:

1.	 Prepare a message.

2.	 Encrypt that message using conventional encryption with a one-time conven-
tional session key.

3.	 Encrypt the session key using public-key encryption with Alice’s public key.

4.	 Attach the encrypted session key to the message and send it to Alice.

Only Alice is capable of decrypting the session key and therefore of recover-
ing the original message. If Bob obtained Alice’s public key by means of Alice’s
public-key certificate, then Bob is assured that it is a valid key.

	 4.5	 X.509 Certificates

ITU-T recommendation X.509 is part of the X.500 series of recommendations that
define a directory service. The directory is, in effect, a server or distributed set
of servers that maintains a database of information about users. The information
includes a mapping from user name to network address, as well as other attributes
and information about the users.

X.509 defines a framework for the provision of authentication services by the
X.500 directory to its users. The directory may serve as a repository of public-key
certificates. Each certificate contains the public key of a user and is signed with the
private key of a trusted certification authority. In addition, X.509 defines alternative
authentication protocols based on the use of public-key certificates.

X.509 is an important standard because the certificate structure and authenti-
cation protocols defined in X.509 are used in a variety of contexts. For example, the
X.509 certificate format is used in S/MIME (Chapter 8), IP Security (Chapter 9),
and SSL/TLS (Chapter 6).

X.509 was initially issued in 1988. The standard was subsequently revised
in 1993 to address some of the security concerns documented in [IANS90] and
[MITC90]. The standard is currently at version 7, issued in 2012.

M04_STAL4855_06_GE_C04.indd 139 8/29/16 1:25 PM

140   chapter 4 / Key Distribution and User Authentication

X.509 is based on the use of public-key cryptography and digital signatures.
The standard does not dictate the use of a specific digital signature algorithm nor a
specific hash function. Figure 4.5 illustrates the overall X.509 scheme for generation
of a public-key certificate. The certificate for Bob’s public key includes unique iden-
tifying information for Bob, Bob’s public key, and identifying information about
the CA, plus other information as explained subsequently. This information is then
signed by computing a hash value of the information and generating a digital signa-
ture using the hash value and the CA’s private key.

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each user.
These user certificates are assumed to be created by some trusted certification author-
ity (CA) and placed in the directory by the CA or by the user. The directory server
itself is not responsible for the creation of public keys or for the certification function;
it merely provides an easily accessible location for users to obtain certificates.

Figure 4.5a shows the general format of a certificate, which includes the fol-
lowing elements.

■■ Version: Differentiates among successive versions of the certificate format;
the default is version 1. If the Issuer Unique Identifier or Subject Unique
Identifier are present, the value must be version 2. If one or more extensions

Figure 4.5  X.509 Formats

Certi�cate
serial number

Version

Issuer name

Signature
algorithm
identi�er

Subject name

Extensions

Issuer unique
identi�er

Subject unique
identi�er

Algorithm
Parameters

Not before

Algorithms
Parameters

Key

Algorithms
Parameters

Signature of certi�cate

(a) X.509 certi�cate

Not after

Subject’s
public key

info

Signature

Period of
validity

V
er

sio
n

1

V
er

sio
n

2

V
er

sio
n

3

A
ll

ve
rs

io
ns

Issuer name

This update date

Next update date

Signature
algorithm
identi�er

Algorithm
Parameters

User certi�cate serial #

(b) Certi�cate revocation list

Revocation date

Algorithms
Parameters

Signature of certi�cate
Signature

Revoked
certi�cate

User certi�cate serial #
Revocation date

Revoked
certi�cate

M04_STAL4855_06_GE_C04.indd 140 8/29/16 1:25 PM

4.5 / X.509 Certificates  141

are present, the version must be version 3. Although the X.509 specification is
currently at version 7, no changes have been made to the fields that make up
the certificate since version 3.

■■ Serial number: An integer value, unique within the issuing CA, that is unam-
biguously associated with this certificate.

■■ Signature algorithm identifier: The algorithm used to sign the certificate,
together with any associated parameters. Because this information is repeated
in the Signature field at the end of the certificate, this field has little, if any,
utility.

■■ Issuer name: X.500 name of the CA that created and signed this certificate.

■■ Period of validity: Consists of two dates: the first and last on which the certifi-
cate is valid.

■■ Subject name: The name of the user to whom this certificate refers. That is,
this certificate certifies the public key of the subject who holds the corre-
sponding private key.

■■ Subject’s public-key information: The public key of the subject, plus an iden-
tifier of the algorithm for which this key is to be used, together with any
associated parameters.

■■ Issuer unique identifier: An optional bit string field used to identify uniquely
the issuing CA in the event the X.500 name has been reused for different
entities.

■■ Subject unique identifier: An optional bit string field used to identify uniquely
the subject in the event the X.500 name has been reused for different entities.

■■ Extensions: A set of one or more extension fields. Extensions were added in
version 3 and are discussed later in this section.

■■ Signature: Covers all of the other fields of the certificate. One component of
this field is the digital signature applied to the other fields of the certificate.
This field includes the signature algorithm identifier.

The unique identifier fields were added in version 2 to handle the possible
reuse of subject and/or issuer names over time. These fields are rarely used.

The standard uses the following notation to define a certificate:

CA V A W = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}

where

Y V X W = the certificate of user X issued by certification authority Y

Y {I} = the signing of I by Y; consists of I with an encrypted hash code
appended

V = version of the certificate

SN = serial number of the certificate

AI = identifier of the algorithm used to sign the certificate

CA = name of certificate authority

UCA = optional unique identifier of the CA

M04_STAL4855_06_GE_C04.indd 141 8/29/16 1:25 PM

142   chapter 4 / Key Distribution and User Authentication

A = name of user A

UA = optional unique identifier of the user A

Ap = public key of user A
TA = period of validity of the certificate

The CA signs the certificate with its private key. If the corresponding public
key is known to a user, then that user can verify that a certificate signed by the CA
is valid. This is the typical digital signature approach, as illustrated in Figure 3.15.

Obtaining a User’s Certificate  User certificates generated by a CA have the fol-
lowing characteristics:

■■ Any user with access to the public key of the CA can verify the user public
key that was certified.

■■ No party other than the certification authority can modify the certificate
without this being detected.

Because certificates are unforgeable, they can be placed in a directory without the
need for the directory to make special efforts to protect them.

If all users subscribe to the same CA, then there is a common trust of that CA.
All user certificates can be placed in the directory for access by all users. In addi-
tion, a user can transmit his or her certificate directly to other users. In either case,
once B is in possession of A’s certificate, B has confidence that messages it encrypts
with A’s public key will be secure from eavesdropping and that messages signed
with A’s private key are unforgeable.

If there is a large community of users, it may not be practical for all users to
subscribe to the same CA. Because it is the CA that signs certificates, each par-
ticipating user must have a copy of the CA’s own public key to verify signatures.
This public key must be provided to each user in an absolutely secure way (with
respect to integrity and authenticity) so that the user has confidence in the associ-
ated certificates. Thus, with many users, it may be more practical for there to be a
number of CAs, each of which securely provides its public key to some fraction of
the users.

Now suppose that A has obtained a certificate from certification authority X1
and B has obtained a certificate from CA X2. If A does not securely know the public
key of X2, then B’s certificate, issued by X2, is useless to A. A can read B’s certificate,
but A cannot verify the signature. However, if the two CAs have securely exchanged
their own public keys, the following procedure will enable A to obtain B’s public key.

1.	 A obtains (from the directory) the certificate of X2 signed by X1. Because A
securely knows X1>s public key, A can obtain X2>s public key from its certifi-
cate and verify it by means of X1>s signature on the certificate.

2.	 A then goes back to the directory and obtains the certificate of B signed by
X2. Because A now has a trusted copy of X2>s public key, A can verify the
signature and securely obtain B’s public key.

A has used a chain of certificates to obtain B’s public key. In the notation of
X.509, this chain is expressed as

X1 V X2 W X2 V B W

M04_STAL4855_06_GE_C04.indd 142 8/29/16 1:25 PM

4.5 / X.509 Certificates  143

In the same fashion, B can obtain A’s public key with the reverse chain:

X2 V X1 W X1 V A W
This scheme need not be limited to a chain of two certificates. An arbitrarily

long path of CAs can be followed to produce a chain. A chain with N elements
would be expressed as

X1 V X2 W X2 V X3 W cXN V B W
In this case, each pair of CAs in the chain (Xi, Xi+ 1) must have created certificates
for each other.

All of these certificates of CAs by CAs need to appear in the directory, and
the user needs to know how they are linked to follow a path to another user’s pub-
lic-key certificate. X.509 suggests that CAs be arranged in a hierarchy so that navi-
gation is straightforward.

Figure 4.6, taken from X.509, is an example of such a hierarchy. The connected
circles indicate the hierarchical relationship among the CAs; the associated boxes
indicate certificates maintained in the directory for each CA entry. The directory
entry for each CA includes two types of certificates:

■■ Forward certificates: Certificates of X generated by other CAs.

■■ Reverse certificates: Certificates generated by X that are the certificates of
other CAs.

Figure 4.6  X.509 Hierarchy: A Hypothetical Example

U

V

W Y

Z

B

X

C A

U<<V>>
V<<U>>

V<<W>>
W<<V>> V<<Y>>

Y<<V>>

W<<X>>
X<<W>>
X<<Z>>

Y<<Z>>
Z<<Y>>
Z<<X>>

X<<C>> X<<A>> Z<>

M04_STAL4855_06_GE_C04.indd 143 8/29/16 1:25 PM

144   chapter 4 / Key Distribution and User Authentication

In this example, user A can acquire the following certificates from the direc-
tory to establish a certification path to B:

X V W W W V V W V V Y W Y V Z W Z V B W

When A has obtained these certificates, it can unwrap the certification path in
sequence to recover a trusted copy of B’s public key. Using this public key, A can
send encrypted messages to B. If A wishes to receive encrypted messages back from
B or to sign messages sent to B, then B will require A’s public key, which can be
obtained from the certification path:

Z V Y W Y V V W V V W W W V X W X V A W

B can obtain this set of certificates from the directory or A can provide them
as part of its initial message to B.

Revocation of Certificates  Recall from Figure 4.5 that each certificate includes
a period of validity, much like a credit card. Typically, a new certificate is issued just
before the expiration of the old one. In addition, it may be desirable on occasion to
revoke a certificate before it expires for one of the following reasons.

1.	 The user’s private key is assumed to be compromised.

2.	 The user is no longer certified by this CA. Reasons for this include subject’s
name has changed, the certificate is superseded, or the certificate was not
issued in conformance with the CA’s policies.

3.	 The CA’s certificate is assumed to be compromised.

Each CA must maintain a list consisting of all revoked but not expired cer-
tificates issued by that CA, including both those issued to users and to other CAs.
These lists also should be posted on the directory.

Each certificate revocation list (CRL) posted to the directory is signed by the
issuer and includes (Figure 4.5b) the issuer’s name, the date the list was created, the
date the next CRL is scheduled to be issued, and an entry for each revoked certifi-
cate. Each entry consists of the serial number of a certificate and revocation date for
that certificate. Because serial numbers are unique within a CA, the serial number
is sufficient to identify the certificate.

When a user receives a certificate in a message, the user must determine
whether the certificate has been revoked. The user could check the directory each
time a certificate is received. To avoid the delays (and possible costs) associated
with directory searches, it is likely that the user would maintain a local cache of cer-
tificates and lists of revoked certificates.

X.509 Version 3

The X.509 version 2 format does not convey all of the information that recent design
and implementation experience has shown to be needed. [FORD95] lists the follow-
ing requirements not satisfied by version 2:

1.	 The Subject field is inadequate to convey the identity of a-key owner to a
public-key user. X.509 names may be relatively short and lacking in obvious
identification details that may be needed by the user.

M04_STAL4855_06_GE_C04.indd 144 8/29/16 1:25 PM

4.5 / X.509 Certificates  145

2.	 The Subject field is also inadequate for many applications, which typically
recognize entities by an Internet e-mail address, a URL, or some other
Internet-related identification.

3.	 There is a need to indicate security policy information. This enables a security
application or function, such as IPSec, to relate an X.509 certificate to a given
policy.

4.	 There is a need to limit the damage that can result from a faulty or malicious
CA by setting constraints on the applicability of a particular certificate.

5.	 It is important to be able to identify different keys used by the same owner at
different times. This feature supports key life cycle management, in particular
the ability to update key pairs for users and CAs on a regular basis or under
exceptional circumstances.

Rather than continue to add fields to a fixed format, standards developers
felt that a more flexible approach was needed. Thus, version 3 includes a number
of optional extensions that may be added to the version 2 format. Each extension
consists of an extension identifier, a criticality indicator, and an extension value.
The criticality indicator indicates whether an extension can be safely ignored. If
the indicator has a value of TRUE and an implementation does not recognize the
extension, it must treat the certificate as invalid.

The certificate extensions fall into three main categories: key and policy infor-
mation, subject and issuer attributes, and certification path constraints.

Key and Policy Information  These extensions convey additional information
about the subject and issuer keys, plus indicators of certificate policy. A certificate
policy is a named set of rules that indicates the applicability of a certificate to a par-
ticular community and/or class of application with common security requirements.
For example, a policy might be applicable to the authentication of electronic data
interchange (EDI) transactions for the trading of goods within a given price range.

This area includes the following:

■■ Authority key identifier: Identifies the public key to be used to verify the sig-
nature on this certificate or CRL. Enables distinct keys of the same CA to be
differentiated. One use of this field is to handle CA key pair updating.

■■ Subject key identifier: Identifies the public key being certified. Useful for
subject key pair updating. Also, a subject may have multiple key pairs and,
correspondingly, different certificates for different purposes (e.g., digital sig-
nature and encryption key agreement).

■■ Key usage: Indicates a restriction imposed as to the purposes for which, and
the policies under which, the certified public key may be used. May indicate
one or more of the following: digital signature, nonrepudiation, key encryp-
tion, data encryption, key agreement, CA signature verification on certifi-
cates, and CA signature verification on CRLs.

■■ Private-key usage period: Indicates the period of use of the private key cor-
responding to the public key. Typically, the private key is used over a different
period from the validity of the public key. For example, with digital signature

M04_STAL4855_06_GE_C04.indd 145 8/29/16 1:25 PM

146   chapter 4 / Key Distribution and User Authentication

keys, the usage period for the signing private key is typically shorter than that
for the verifying public key.

■■ Certificate policies: Certificates may be used in environments where multiple
policies apply. This extension lists policies that the certificate is recognized as
supporting, together with optional qualifier information.

■■ Policy mappings: Used only in certificates for CAs issued by other CAs. Policy
mappings allow an issuing CA to indicate that one or more of that issuer’s policies
can be considered equivalent to another policy used in the subject CA’s domain.

Certificate Subject and Issuer Attributes  These extensions support alternative
names, in alternative formats, for a certificate subject or certificate issuer and can
convey additional information about the certificate subject to increase a certificate
user’s confidence that the certificate subject is a particular person or entity. For
example, information such as postal address, position within a corporation, or pic-
ture image may be required.

The extension fields in this area include the following:

■■ Subject alternative name: Contains one or more alternative names, using any
of a variety of forms. This field is important for supporting certain applica-
tions, such as electronic mail, EDI, and IPSec, which may employ their own
name forms.

■■ Issuer alternative name: Contains one or more alternative names, using any
of a variety of forms.

■■ Subject directory attributes: Conveys any desired X.500 directory attribute
values for the subject of this certificate.

Certification Path Constraints  These extensions allow constraint specifications
to be included in certificates issued for CAs by other CAs. The constraints may
restrict the types of certificates that can be issued by the subject CA or that may
occur subsequently in a certification chain.

The extension fields in this area include the following:

■■ Basic constraints: Indicates if the subject may act as a CA. If so, a certification
path length constraint may be specified.

■■ Name constraints: Indicates a name space within which all subject names in
subsequent certificates in a certification path must be located.

■■ Policy constraints: Specifies constraints that may require explicit certificate
policy identification or inhibit policy mapping for the remainder of the certi-
fication path.

	 4.6	 Public-Key Infrastructure

RFC 4949 (Internet Security Glossary) defines public-key infrastructure (PKI)
as the set of hardware, software, people, policies, and procedures needed to cre-
ate, manage, store, distribute, and revoke digital certificates based on asymmet-
ric cryptography. The principal objective for developing a PKI is to enable secure,

M04_STAL4855_06_GE_C04.indd 146 8/29/16 1:25 PM

4.6 / Public-Key Infrastructure  147

convenient, and efficient acquisition of public keys. The Internet Engineering Task
Force (IETF) Public Key Infrastructure X.509 (PKIX) working group has been the
driving force behind setting up a formal (and generic) model based on X.509 that is
suitable for deploying a certificate-based architecture on the Internet. This section
describes the PKIX model.

Figure 4.7 shows the interrelationship among the key elements of the PKIX
model. These elements are

■■ End entity: A generic term used to denote end users, devices (e.g., servers,
routers), or any other entity that can be identified in the subject field of a
public key certificate. End entities typically consume and/or support PKI-
related services.

■■ Certification authority (CA): The issuer of certificates and (usually) certifi-
cate revocation lists (CRLs). It may also support a variety of administrative
functions, although these are often delegated to one or more registration
authorities.

■■ Registration authority (RA): An optional component that can assume a
number of administrative functions from the CA. The RA is often associated

Figure 4.7  PKIX Architectural Model

End entity
Certi�cate/CRL retrieval

Certi�cate
publication

Certi�cate/CRL
publication

CRL
publication

Cross-
certi�cation

C
er

ti�
ca

te
/C

R
L

 re
po

si
to

ry

Certi�cate
authority

Registration
authority

Certi�cate
authority

Registration,
initialization,
certi�cation,
key pair recovery,
key pair update
revocation request

PKI
users

PKI
management

entities

CRL issuer

M04_STAL4855_06_GE_C04.indd 147 8/29/16 1:25 PM

148   chapter 4 / Key Distribution and User Authentication

with the end entity registration process, but can assist in a number of other
areas as well.

■■ CRL issuer: An optional component that a CA can delegate to publish CRLs.

■■ Repository: A generic term used to denote any method for storing certifi-
cates and CRLs so that they can be retrieved by end entities.

PKIX Management Functions

PKIX identifies a number of management functions that potentially need to be sup-
ported by management protocols. These are indicated in Figure 4.7 and include the
following:

■■ Registration: This is the process whereby a user first makes itself known to
a CA (directly, or through an RA), prior to that CA issuing a certificate or
certificates for that user. Registration begins the process of enrolling in a PKI.
Registration usually involves some off-line or online procedure for mutual
authentication. Typically, the end entity is issued one or more shared secret
keys used for subsequent authentication.

■■ Initialization: Before a client system can operate securely, it is necessary to
install key materials that have the appropriate relationship with keys stored
elsewhere in the infrastructure. For example, the client needs to be securely
initialized with the public key and other assured information of the trusted
CA(s) to be used in validating certificate paths.

■■ Certification: This is the process in which a CA issues a certificate for a user’s
public key and returns that certificate to the user’s client system and/or posts
that certificate in a repository.

■■ Key pair recovery: Key pairs can be used to support digital signature creation
and verification, encryption and decryption, or both. When a key pair is used
for encryption/decryption, it is important to provide a mechanism to recover
the necessary decryption keys when normal access to the keying material is
no longer possible, otherwise it will not be possible to recover the encrypted
data. Loss of access to the decryption key can result from forgotten pass-
words/PINs, corrupted disk drives, damage to hardware tokens, and so on.
Key pair recovery allows end entities to restore their encryption/decryption
key pair from an authorized key backup facility (typically, the CA that issued
the end entity’s certificate).

■■ Key pair update: All key pairs need to be updated regularly (i.e., replaced
with a new key pair) and new certificates issued. Update is required when the
certificate lifetime expires and as a result of certificate revocation.

■■ Revocation request: An authorized person advises a CA of an abnormal situ-
ation requiring certificate revocation. Reasons for revocation include private
key compromise, change in affiliation, and name change.

■■ Cross-certification: Two CAs exchange information used in establishing
a cross-certificate. A cross-certificate is a certificate issued by one CA to
another CA that contains a CA signature key used for issuing certificates.

M04_STAL4855_06_GE_C04.indd 148 8/29/16 1:25 PM

4.7 / Federated Identity Management  149

PKIX Management Protocols

The PKIX working group has defined two alternative management protocols
between PKIX entities that support the management functions listed in the pre-
ceding subsection. RFC 2510 defines the certificate management protocols (CMP).
Within CMP, each of the management functions is explicitly identified by specific
protocol exchanges. CMP is designed to be a flexible protocol able to accommodate
a variety of technical, operational, and business models.

RFC 2797 defines certificate management messages over CMS (CMC), where
CMS refers to RFC 2630, cryptographic message syntax. CMC is built on earlier work
and is intended to leverage existing implementations. Although all of the PKIX func-
tions are supported, the functions do not all map into specific protocol exchanges.

	 4.7	F ederated Identity Management

Federated identity management is a relatively new concept dealing with the use of
a common identity management scheme across multiple enterprises and numerous
applications and supporting many thousands, even millions, of users. We begin our
overview with a discussion of the concept of identity management and then examine
federated identity management.

Identity Management

Identity management is a centralized, automated approach to provide enterprise-
wide access to resources by employees and other authorized individuals. The focus
of identity management is defining an identity for each user (human or process),
associating attributes with the identity, and enforcing a means by which a user can
verify identity. The central concept of an identity management system is the use
of single sign-on (SSO). SSO enables a user to access all network resources after a
single authentication.

Typical services provided by a federated identity management system include
the following:

■■ Point of contact: Includes authentication that a user corresponds to the user
name provided, and management of user/server sessions.

■■ SSO protocol services: Provides a vendor-neutral security token service for
supporting a single sign on to federated services.

■■ Trust services: Federation relationships require a trust relationship-based
federation between business partners. A trust relationship is represented by
the combination of the security tokens used to exchange information about a
user, the cryptographic information used to protect these security tokens, and
optionally the identity mapping rules applied to the information contained
within this token.

■■ Key services: Management of keys and certificates.

■■ Identity services: Services that provide the interface to local data stores, includ-
ing user registries and databases, for identity-related information management.

M04_STAL4855_06_GE_C04.indd 149 8/29/16 1:25 PM

150   chapter 4 / Key Distribution and User Authentication

■■ Authorization: Granting access to specific services and/or resources based on
the authentication.

■■ Provisioning: Includes creating an account in each target system for the user,
enrollment or registration of user in accounts, establishment of access rights
or credentials to ensure the privacy and integrity of account data.

■■ Management: Services related to runtime configuration and deployment.

Note that Kerberos contains a number of elements of an identity management
system.

Figure 4.8 [LINN06] illustrates entities and data flows in a generic identity
management architecture. A principal is an identity holder. Typically, this is a human
user that seeks access to resources and services on the network. User devices, agent
processes, and server systems may also function as principals. Principals authenti-
cate themselves to an identity provider. The identity provider associates authentica-
tion information with a principal, as well as attributes and one or more identifiers.

Increasingly, digital identities incorporate attributes other than simply
an identifier and authentication information (such as passwords and biometric
information). An attribute service manages the creation and maintenance of such
attributes. For example, a user needs to provide a shipping address each time an
order is placed at a new Web merchant, and this information needs to be revised
when the user moves. Identity management enables the user to provide this infor-
mation once, so that it is maintained in a single place and released to data con-
sumers in accordance with authorization and privacy policies. Users may create
some of the attributes to be associated with their digital identity, such as address.
Administrators may also assign attributes to users, such as roles, access permissions,
and employee information.

Figure 4.8  Generic Identity Management Architecture

Identity
Provider

Attribute
Service

Data
consumer Principal

Administrator

M04_STAL4855_06_GE_C04.indd 150 8/29/16 1:25 PM

4.7 / Federated Identity Management  151

Data consumers are entities that obtain and employ data maintained and pro-
vided by identity and attribute providers, which are often used to support authoriza-
tion decisions and to collect audit information. For example, a database server or
file server is a data consumer that needs a client’s credentials so as to know what
access to provide to that client.

Identity Federation

Identity federation is, in essence, an extension of identity management to mul-
tiple security domains. Such domains include autonomous internal business units,
external business partners, and other third-party applications and services. The
goal is to provide the sharing of digital identities so that a user can be authen-
ticated a single time and then access applications and resources across multiple
domains. Because these domains are relatively autonomous or independent, no
centralized control is possible. Rather, the cooperating organizations must form a
federation based on agreed standards and mutual levels of trust to securely share
digital identities.

Federated identity management refers to the agreements, standards, and
technologies that enable the portability of identities, identity attributes, and entitle-
ments across multiple enterprises and numerous applications and supports many
thousands, even millions, of users. When multiple organizations implement interop-
erable federated identity schemes, an employee in one organization can use a single
sign-on to access services across the federation with trust relationships associated
with the identity. For example, an employee may log onto her corporate intranet
and be authenticated to perform authorized functions and access authorized ser-
vices on that intranet. The employee could then access her health benefits from an
outside health-care provider without having to reauthenticate.

Beyond SSO, federated identity management provides other capabilities. One
is a standardized means of representing attributes. Increasingly, digital identities
incorporate attributes other than simply an identifier and authentication informa-
tion (such as passwords and biometric information). Examples of attributes include
account numbers, organizational roles, physical location, and file ownership. A user
may have multiple identifiers; for example, each identifier may be associated with a
unique role with its own access permissions.

Another key function of federated identity management is identity map-
ping. Different security domains may represent identities and attributes differ-
ently. Furthermore, the amount of information associated with an individual in one
domain may be more than is necessary in another domain. The federated identity
management protocols map identities and attributes of a user in one domain to the
requirements of another domain.

Figure 4.9 illustrates entities and data flows in a generic federated identity
management architecture.

The identity provider acquires attribute information through dialogue and
protocol exchanges with users and administrators. For example, a user needs to
provide a shipping address each time an order is placed at a new Web merchant,
and this information needs to be revised when the user moves. Identity manage-
ment enables the user to provide this information once, so that it is maintained in a

M04_STAL4855_06_GE_C04.indd 151 8/29/16 1:25 PM

152   chapter 4 / Key Distribution and User Authentication

single place and released to data consumers in accordance with authorization and
privacy policies.

Service providers are entities that obtain and employ data maintained and pro-
vided by identity providers, often to support authorization decisions and to collect
audit information. For example, a database server or file server is a data consumer
that needs a client’s credentials so as to know what access to provide to that client.
A service provider can be in the same domain as the user and the identity provider.
The power of this approach is for federated identity management, in which the ser-
vice provider is in a different domain (e.g., a vendor or supplier network).

Standards  Federated identity management uses a number of standards as the
building blocks for secure identity exchange across different domains or hetero-
geneous systems. In essence, organizations issue some form of security tickets for
their users that can be processed by cooperating partners. Identity federation stan-
dards are thus concerned with defining these tickets in terms of content and format,

Figure 4.9  Federated Identity Operation

User

1
Identity provider
(source domain)

Service provider
(destination domain)

1 End user’s browser or other application engages
in an authentication dialogue with identity provider
in the same domain. End user also provides attribute
values associated with user’s identity.

2 Some attributes associated with an identity, such as
allowable roles, may be provided by an administrator
in the same domain.

3 A service provider in a remote domain, which the user
wishes to access, obtains identity information,
authentication information, and associated attributes
from the identity provider in the source domain.

4 Service provider opens session with remote user and
enforces access control restrictions based on user’s
identity and attributes.

Administrator

2

3

4

M04_STAL4855_06_GE_C04.indd 152 8/29/16 1:25 PM

4.7 / Federated Identity Management  153

providing protocols for exchanging tickets, and performing a number of manage-
ment tasks. These tasks include configuring systems to perform attribute transfers
and identity mapping, and performing logging and auditing functions. The key stan-
dards are as follows:

■■ The Extensible Markup Language (XML): A markup language uses sets of
embedded tags or labels to characterize text elements within a document so
as to indicate their appearance, function, meaning, or context. XML docu-
ments appear similar to HTML (Hypertext Markup Language) documents
that are visible as Web pages, but provide greater functionality. XML includes
strict definitions of the data type of each field, thus supporting database for-
mats and semantics. XML provides encoding rules for commands that are
used to transfer and update data objects.

■■ The Simple Object Access Protocol (SOAP): A minimal set of conventions
for invoking code using XML over HTTP. It enables applications to request
services from one another with XML-based requests and receive responses
as data formatted with XML. Thus, XML defines data objects and structures,
and SOAP provides a means of exchanging such data objects and performing
remote procedure calls related to these objects. See [ROS06] for an informa-
tive discussion.

■■ WS-Security: A set of SOAP extensions for implementing message integrity
and confidentiality in Web services. To provide for secure exchange of SOAP
messages among applications, WS-Security assigns security tokens to each
message for use in authentication.

■■ Security Assertion Markup Language (SAML): An XML-based language
for the exchange of security information between online business partners.
SAML conveys authentication information in the form of assertions about
subjects. Assertions are statements about the subject issued by an authorita-
tive entity.

The challenge with federated identity management is to integrate multiple
technologies, standards, and services to provide a secure, user-friendly utility. The
key, as in most areas of security and networking, is the reliance on a few mature
standards widely accepted by industry. Federated identity management seems to
have reached this level of maturity.

Examples  To get some feel for the functionality of identity federation, we look
at three scenarios, taken from [COMP06]. In the first scenario (Figure 4.10a),
Workplace.com contracts with Health.com to provide employee health benefits.
An employee uses a Web interface to sign on to Workplace.com and goes through
an authentication procedure there. This enables the employee to access autho-
rized services and resources at Workplace.com. When the employee clicks on a
link to access health benefits, her browser is redirected to Health.com. At the same
time, the Workplace.com software passes the user’s identifier to Health.com in a
secure manner. The two organizations are part of a federation that cooperatively
exchanges user identifiers. Health.com maintains user identities for every employee
at Workplace.com and associates with each identity health-benefits information

M04_STAL4855_06_GE_C04.indd 153 8/29/16 1:25 PM

http://Health.com
http://Health.com
http://Workplace.com
http://Workplace.com
http://Workplace.com
http://Workplace.com
http://Health.com
http://Health.com
http://Workplace.com

154   chapter 4 / Key Distribution and User Authentication

and access rights. In this example, the linkage between the two companies is based
on account information and user participation is browser based.

Figure 4.10b shows a second type of browser-based scheme. PartsSupplier.
com is a regular supplier of parts to Workplace.com. In this case, a role-based
access control (RBAC) scheme is used for access to information. An engineer of
Workplace.com authenticates at the employee portal at Workplace.com and clicks
on a link to access information at PartsSupplier.com. Because the user is authen-
ticated in the role of an engineer, he is taken to the technical documentation and
troubleshooting portion of PartsSupplier.com’s Web site without having to sign
on. Similarly, an employee in a purchasing role signs on at Workplace.com and is
authorized, in that role, to place purchases at PartsSupplier.com without having to
authenticate to PartsSupplier.com. For this scenario, PartsSupplier.com does not
have identity information for individual employees at Workplace.com. Rather, the
linkage between the two federated partners is in terms of roles.

Figure 4.10  Federated Identity Scenarios

User store

(a) Federation based on account linking

(c) Chained Web Services

Workplace.com
(employee portal)

Name
Joe
Jane
Ravi

ID
1213
1410
1603

User store
Name
Joe
Jane
Ravi

ID
1213
1410
1603

Health.com

User store

(b) Federation based on roles

Name
Joe
Jane
Ravi

ID
1213
1410
1603

Dept
Eng
Purch
Purch

User store
Role

Engineer
Purchaser

Authentication Website access

End user
(employee)

User ID

Workplace.com
(procurement
application)

PinSupplies.com
(Purchasing Web

service)

Authentication

Procurement

request

End user
(employee)

SOAP message

Eship.com
(shipping Web

service)

SOAP message

Workplace.com
(employee portal)

PartsSupplier.com

Authentication Website access

End user
(employee)

Role

M04_STAL4855_06_GE_C04.indd 154 8/29/16 1:25 PM

http://Workplace.com
http://Health.com
http://Workplace.com
http://PartsSupplier.com
http://Workplace.com
http://PinSupplies.com
http://Eship.com
http://PartsSupplier.com
http://PartsSupplier.com
http://PartsSupplier.com
http://Workplace.com
http://Workplace.com
http://Workplace.com
http://PartsSupplier.com
http://PartsSupplier.com
http://PartsSupplier.com
http://Workplace.com
http://PartsSupplier.com
http://Workplace.com

4.8 / Key Terms, Review Questions, and Problems  155

The scenario illustrated in Figure 4.10c can be referred to as document based
rather than browser based. In this third example, Workplace.com has a purchasing
agreement with PinSupplies.com, and PinSupplies.com has a business relationship
with E-Ship.com. An employee of Workplace.com signs on and is authenticated to
make purchases. The employee goes to a procurement application that provides a
list of Workplace.com’s suppliers and the parts that can be ordered. The user clicks
on the PinSupplies button and is presented with a purchase order Web page (HTML
page). The employee fills out the form and clicks the submit button. The procure-
ment application generates an XML/SOAP document that it inserts into the enve-
lope body of an XML-based message. The procurement application then inserts the
user’s credentials in the envelope header of the message, together with Workplace.
com’s organizational identity. The procurement application posts the message to the
PinSupplies.com’s purchasing Web service. This service authenticates the incoming
message and processes the request. The purchasing Web service then sends a SOAP
message its shipping partner to fulfill the order. The message includes a PinSupplies.
com security token in the envelope header and the list of items to be shipped as well
as the end user’s shipping information in the envelope body. The shipping Web ser-
vice authenticates the request and processes the shipment order.

	 4.8 Key Terms, Review Questions, and Problems

Key Terms

authentication
authentication server (AS)
federated identity

management
identity management
Kerberos
Kerberos realm
key distribution

key distribution center (KDC)
key management
master key
mutual authentication
nonce
one-way authentication
propagating cipher block

chaining (PCBC) mode

public-key certificate
public-key directory
realm
replay attack
ticket
ticket-granting server (TGS)
timestamp
X.509 certificate

Review Questions

	 4.1	 Explain the operation of a key distribution center.
	 4.2	 What are the advantages of the automated key distribution approach?
	 4.3	 What is Kerberos?
	 4.4	 Identify the security threats that exist in an open distributed network.
	 4.5	 In the context of Kerberos, what is a realm?
	 4.6	 What are the ingredients of a authentication server’s ticket? Explain the significance

of each.
	 4.7	 List the environmental shortcomings and technical deficiencies of Kerberos version 4.
	 4.8	 Identify the weakness of a public key distribution with a public key algorithm. How

can it be fixed?
	 4.9	 What is a X.509 certificate?
	 4.10	 Explain the different fields of the public-key certificate of the X.509 scheme.

M04_STAL4855_06_GE_C04.indd 155 8/29/16 1:25 PM

http://Workplace.com
http://PinSupplies.com
http://PinSupplies.com
http://E-Ship.com
http://Workplace.com
http://Workplace.com
http://Workplace.com
http://Workplace.com
http://PinSupplies.com
http://PinSupplies.com
http://PinSupplies.com

156   chapter 4 / Key Distribution and User Authentication

	 4.11	 What is public-key infrastructure?
	 4.12	 What are the key elements of the PKIX model?
	 4.13	 Name the PKIX certificate management protocols.
	 4.14	 What is federated identity management?

Problems

	 4.1	 “We are under great pressure, Holmes.” Detective Lestrade looked nervous. “We
have learned that copies of sensitive government documents are stored in computers
of one foreign embassy here in London. Normally these documents exist in electronic
form only on a selected few government computers that satisfy the most stringent
security requirements. However, sometimes they must be sent through the network
connecting all government computers. But all messages in this network are encrypted
using a top secret encryption algorithm certified by our best crypto experts. Even the
NSA and the KGB are unable to break it. And now these documents have appeared
in hands of diplomats of a small, otherwise insignificant, country. And we have no
idea how it could happen.”

“But you do have some suspicion who did it, do you?” asked Holmes.
“Yes, we did some routine investigation. There is a man who has legal access

to one of the government computers and has frequent contacts with diplomats from
the embassy. But the computer he has access to is not one of the trusted ones where
these documents are normally stored. He is the suspect, but we have no idea how he
could obtain copies of the documents. Even if he could obtain a copy of an encrypted
document, he couldn’t decrypt it.”

“Hmm, please describe the communication protocol used on the network.”
Holmes opened his eyes, thus proving that he had followed Lestrade’s talk with an
attention that contrasted with his sleepy look.

“Well, the protocol is as follows. Each node N of the network has been assigned
a unique secret key Kn. This key is used to secure communication between the node
and a trusted server. That is, all the keys are stored also on the server. User A, wish-
ing to send a secret message M to user B, initiates the following protocol:
1.	 A generates a random number R and sends to the server his name A, destina-

tion B, and E(Ka, R).
2.	 Server responds by sending E(Kb, R) to A.
3.	 A sends E(R, M) together with E(Kb, R) to B.
4.	 B knows Kb, thus decrypts E(Kb, R) to get R and will subsequently use R to

decrypt E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. I admit
the man could intercept messages sent between the top secret trusted nodes, but I see
no way he could decrypt them.”

“Well, I think you have your man, Lestrade. The protocol isn’t secure because
the server doesn’t authenticate users who send him a request. Apparently designers
of the protocol have believed that sending E(Kx, R) implicitly authenticates user X as
the sender, as only X (and the server) knows Kx. But you know that E(Kx, R) can be
intercepted and later replayed. Once you understand where the hole is, you will be
able to obtain enough evidence by monitoring the man’s use of the computer he has
access to. Most likely he works as follows: After intercepting E(Ka, R) and E(R, M)
(see steps 1 and 3 of the protocol), the man, let’s denote him as Z, will continue by
pretending to be A and . . .
Finish the sentence for Holmes.

M04_STAL4855_06_GE_C04.indd 156 8/29/16 1:25 PM

4.8 / Key Terms, Review Questions, and Problems  157

	 4.2	 There are three typical ways to use nonces as challenges. Suppose Na is a nonce gen-
erated by A, A and B share key K, and f() is a function (such as increment). The three
usages are

Usage 1 Usage 2 Usage 3

(1) A S B: Na (1) A S B: E(K, Na) (1) A S B: E(K, Na)

(2) B S A: E(K, Na) (2) B S A: Na (2) B S A: E(K, f(Na))

Describe situations for which each usage is appropriate.
	 4.3	 Show that a random error in one block of ciphertext is propagated to all subsequent

blocks of plaintext in PCBC mode (see Figure F.2 in Appendix F).
	 4.4	 Suppose that, in PCBC mode, blocks Ci and Ci+ 1 are interchanged during transmis-

sion. Show that this affects only the decrypted blocks Pi and Pi+ 1 but not subsequent
blocks.

	 4.5	 In addition to providing a standard for public-key certificate formats, X.509 specifies
an authentication protocol. The original version of X.509 contains a security flaw.
The essence of the protocol is

A S B: A {tA, rA, IDB}

B S A: B {tB, rB, IDA, rA}

A S B: A {rB}

where tA and tB are timestamps, rA and rB are nonces, and the notation X {Y} indicates
that the message Y is transmitted, encrypted, and signed by X.

The text of X.509 states that checking timestamps tA and tB is optional for
three-way authentication. But consider the following example: Suppose A and B
have used the preceding protocol on some previous occasion, and that opponent C
has intercepted the preceding three messages. In addition, suppose that timestamps
are not used and are all set to 0. Finally, suppose C wishes to impersonate A to B.
C initially sends the first captured message to B:

	 C S B: A {0, rA, IDB}	

B responds, thinking it is talking to A but is actually talking to C:

	 B S C: B {0, r B
= , IDA, rA}	

C meanwhile causes A to initiate authentication with C by some means. As a result,
A sends C the following:

	 A S C: A {0, r A
= , IDC}	

C responds to A using the same nonce provided to C by B.

	 C S A: C {0, r B
= , IDA, r A

= }	

A responds with

	 A S C: A {r B
= }	

This is exactly what C needs to convince B that it is talking to A, so C now repeats the
incoming message back out to B.

	 C S B: A {r B
= }	

So B will believe it is talking to A, whereas it is actually talking to C. Suggest a simple
solution to this problem that does not involve the use of timestamps.

M04_STAL4855_06_GE_C04.indd 157 8/29/16 1:25 PM

158   chapter 4 / Key Distribution and User Authentication

	 4.6	 Consider a one-way authentication technique based on asymmetric encryption:

A S B: IDA

B S A: R1

A S B: E(PRa, R1)

a.	 Explain the protocol.
b.	 What type of attack is this protocol susceptible to?

	 4.7	 Consider a one-way authentication technique based on asymmetric encryption:

A S B: IDA

B S A: E(PUa, R2)

A S B: R2

a.	 Explain the protocol.
b.	 What type of attack is this protocol susceptible to?

	 4.8	 In Kerberos, how do servers verify the authenticity of the client using the ticket?
	 4.9	 In Kerberos, how does an authentication server protect a ticket from being altered by

the client or opponent?
	 4.10	 How is ticket reuse by an opponent prevented in Kerberos?
	 4.11	 What is the purpose of a session key in Kerberos? How is it distributed by the AS?
	 4.12	 The 1988 version of X.509 lists properties that RSA keys must satisfy to be secure,

given current knowledge about the difficulty of factoring large numbers. The discus-
sion concludes with a constraint on the public exponent and the modulus n:

It must be ensured that e 7 log2(n) to prevent attack by taking the
 eth root mod n to disclose the plaintext.

Although the constraint is correct, the reason given for requiring it is incorrect. What
is wrong with the reason given and what is the correct reason?

	 4.13	 Find at least one intermediate certification authority’s certificate and one trusted
root certification authority’s certificate on your computer (e.g., in the browser). Print
screenshots of both the general and details tab for each certificate.

	 4.14	 NIST defines the term “cryptoperiod” as the time span during which a specific key is
authorized for use or in which the keys for a given system or application may remain
in effect. One document on key management uses the following time diagram for a
shared secret key.

Originator Usage Period

Recipient Usage Period

Cryptoperiod

Explain the overlap by giving an example application in which the originator’s usage
period for the shared secret key begins before the recipient’s usage period and also
ends before the recipient’s usage period.

M04_STAL4855_06_GE_C04.indd 158 8/29/16 1:25 PM

4.8 / Key Terms, Review Questions, and Problems  159

	 4.15	 Consider the following protocol, designed to let A and B decide on a fresh, shared
session key KAB

= . We assume that they already share a long-term key KAB.
1.	 A S B: A, NA
2.	 B S A: E(KAB, [NA, KAB

=])
3.	 A S B: E(KAB

= , NA)
a.	 We first try to understand the protocol designer’s reasoning:

■■ Why would A and B believe after the protocol ran that they share KAB
=

with the other party?
■■ Why would they believe that this shared key is fresh?

In both cases, you should explain both the reasons of both A and B, so your answer
should complete the following sentences.

A believes that she shares KAB
= with B since . . .

B believes that he shares KAB
= with A since . . .

A believes that KAB
= is fresh since . . .

B believes that KAB
= is fresh since . . .

b.	 Assume now that A starts a run of this protocol with B. However, the connec-
tion is intercepted by the adversary C. Show how C can start a new run of the
protocol using reflection, causing A to believe that she has agreed on a fresh
key with B (in spite of the fact that she has only been communicating with C).
Thus, in particular, the belief in (a) is false.

c.	 Propose a modification of the protocol that prevents this attack.
	 4.16	 List the different management functions of the PKIX model.
	 4.17	 Explain the entities and data flows of generic identity management architecture.
	 4.18	 Consider the following protocol:

A S KDC: IDA } IDB }N1

KDC S A: E(Ka, [KS } IDB }N1 }E(Kb, [KS } IDA]))

A S B: E(Kb, [KS } IDA])

B S A: E(KS, N2)A S B: E(KS, f(N2))

a.	 Explain the protocol.
b.	 Can you think of a possible attack on this protocol? Explain how it can be done.
c.	 Mention a possible technique to get around the attack—not a detailed mechanism,

just the basics of the idea.

Note: The remaining problems deal with a cryptographic product developed by IBM,
which is briefly described in a document at this book’s Web site in IBMCrypto.pdf.
Try these problems after reviewing the document.

	 4.19	 What is the effect of adding the instruction EMKi?

	 EMKi: X S E(KMHi, X) i = 0, 1	

	 4.20	 Suppose N different systems use the IBM Cryptographic Subsystem with host master
keys KMH[i](i = 1, 2, c , N). Devise a method for communicating between sys-
tems without requiring the system to either share a common host master key or to
divulge their individual host master keys. Hint: Each system needs three variants of
its host master key.

	 4.21	 The principal objective of the IBM Cryptographic Subsystem is to protect transmis-
sions between a terminal and the processing system. Devise a procedure, perhaps
adding instructions, which will allow the processor to generate a session key KS and
distribute it to Terminal i and Terminal j without having to store a key-equivalent
variable in the host.

M04_STAL4855_06_GE_C04.indd 159 8/29/16 1:25 PM

160160

5.1	 Network Access Control

Elements of a Network Access Control System
Network Access Enforcement Methods

5.2	 Extensible Authentication Protocol

Authentication Methods
EAP Exchanges

5.3	 IEEE 802.1X Port-Based Network Access Control

5.4	 Cloud Computing

Cloud Computing Elements
Cloud Computing Reference Architecture

5.5	 Cloud Security Risks and Countermeasures

5.6	 Data Protection in the Cloud

5.7	 Cloud Security as a Service

5.8	 Addressing Cloud Computing Security Concerns

5.9	 Key Terms, Review Questions, and Problems

 Chapter

Network Access Control
and Cloud Security

M05_STAL4855_06_GE_C05.indd 160 8/9/16 9:03 PM

5.1 / Network Access Control  161

This chapter begins our discussion of network security, focusing on two key topics:
network access control and cloud security. We begin with an overview of network
access control systems, summarizing the principal elements and techniques involved
in such a system. Next, we discuss the Extensible Authentication Protocol and IEEE
802.1X, two widely implemented standards that are the foundation of many network
access control systems.

The remainder of the chapter deals with cloud security. We begin with an
overview of cloud computing, and follow this with a discussion of cloud security
issues.

	 5.1	 Network Access Control

Network access control (NAC) is an umbrella term for managing access to a
network. NAC authenticates users logging into the network and determines what
data they can access and actions they can perform. NAC also examines the health of
the user’s computer or mobile device (the endpoints).

Elements of a Network Access Control System

NAC systems deal with three categories of components:

■■ Access requestor (AR): The AR is the node that is attempting to access the
network and may be any device that is managed by the NAC system, including
workstations, servers, printers, cameras, and other IP-enabled devices. ARs are
also referred to as supplicants, or simply, clients.

■■ Policy server: Based on the AR’s posture and an enterprise’s defined policy,
the policy server determines what access should be granted. The policy server
often relies on backend systems, including antivirus, patch management, or a
user directory, to help determine the host’s condition.

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Discuss the principal elements of a network access control system.

◆◆ Discuss the principal network access enforcement methods.

◆◆ Present an overview of the Extensible Authentication Protocol.

◆◆ Understand the operation and role of the IEEE 802.1X Port-Based
Network Access Control mechanism.

◆◆ Present an overview of cloud computing concepts.

◆◆ Understand the unique security issues related to cloud computing.

M05_STAL4855_06_GE_C05.indd 161 8/9/16 9:03 PM

162   chapter 5 / Network Access Control and Cloud Security

■■ Network access server (NAS): The NAS functions as an access control point
for users in remote locations connecting to an enterprise’s internal network.
Also called a media gateway, a remote access server (RAS), or a policy server,
an NAS may include its own authentication services or rely on a separate
authentication service from the policy server.

Figure 5.1 is a generic network access diagram. A variety of different ARs
seek access to an enterprise network by applying to some type of NAS. The first
step is generally to authenticate the AR. Authentication typically involves some
sort of secure protocol and the use of cryptographic keys. Authentication may be
performed by the NAS, or the NAS may mediate the authentication process. In the
latter case, authentication takes place between the supplicant and an authentication
server that is part of the policy server or that is accessed by the policy server.

The authentication process serves a number of purposes. It verifies a suppli-
cant’s claimed identity, which enables the policy server to determine what access
privileges, if any, the AR may have. The authentication exchange may result in the

Figure 5.1  Network Access Control Context

Supplicants

Network access servers

Authentication
server

DHCP
server

VLAN
server

Policy
server

Patch
management

Network
resources

Quarantine
network

Antivirus Antispyware

Enterprise network

M05_STAL4855_06_GE_C05.indd 162 8/9/16 9:03 PM

5.1 / Network Access Control  163

establishment of session keys to enable future secure communication between the
supplicant and resources on the enterprise network.

Typically, the policy server or a supporting server will perform checks on the
AR to determine if it should be permitted interactive remote access connectivity.
These checks—sometimes called health, suitability, screening, or assessment
checks—require software on the user’s system to verify compliance with certain
requirements from the organization’s secure configuration baseline. For example,
the user’s antimalware software must be up-to-date, the operating system must
be fully patched, and the remote computer must be owned and controlled by the
organization. These checks should be performed before granting the AR access to
the enterprise network. Based on the results of these checks, the organization can
determine whether the remote computer should be permitted to use interactive
remote access. If the user has acceptable authorization credentials but the remote
computer does not pass the health check, the user and remote computer should be
denied network access or have limited access to a quarantine network so that autho-
rized personnel can fix the security deficiencies. Figure 5.1 indicates that the quar-
antine portion of the enterprise network consists of the policy server and related
AR suitability servers. There may also be application servers that do not require the
normal security threshold be met.

Once an AR has been authenticated and cleared for a certain level of access
to the enterprise network, the NAS can enable the AR to interact with resources in
the enterprise network. The NAS may mediate every exchange to enforce a security
policy for this AR, or may use other methods to limit the privileges of the AR.

Network Access Enforcement Methods

Enforcement methods are the actions that are applied to ARs to regulate access
to the enterprise network. Many vendors support multiple enforcement methods
simultaneously, allowing the customer to tailor the configuration by using one or a
combination of methods. The following are common NAC enforcement methods.

■■ IEEE 802.1X: This is a link layer protocol that enforces authorization before
a port is assigned an IP address. IEEE 802.1X makes use of the Extensible
Authentication Protocol for the authentication process. Sections 5.2 and 5.3
cover the Extensible Authentication Protocol and IEEE 802.1X, respectively.

■■ Virtual local area networks (VLANs): In this approach, the enterprise net-
work, consisting of an interconnected set of LANs, is segmented logically into
a number of virtual LANs.1 The NAC system decides to which of the network’s
VLANs it will direct an AR, based on whether the device needs security reme-
diation, Internet access only, or some level of network access to enterprise
resources. VLANs can be created dynamically and VLAN membership, of
both enterprise servers and ARs, may overlap. That is, an enterprise server or
an AR may belong to more than one VLAN.

1A VLAN is a logical subgroup within a LAN that is created via software rather than manually moving
cables in the wiring closet. It combines user stations and network devices into a single unit regardless
of the physical LAN segment they are attached to and allows traffic to flow more efficiently within
populations of mutual interest. VLANs are implemented in port-switching hubs and LAN switches.

M05_STAL4855_06_GE_C05.indd 163 8/9/16 9:03 PM

164   chapter 5 / Network Access Control and Cloud Security

■■ Firewall: A firewall provides a form of NAC by allowing or denying network
traffic between an enterprise host and an external user. Firewalls are discussed
in Chapter 12.

■■ DHCP management: The Dynamic Host Configuration Protocol (DHCP) is
an Internet protocol that enables dynamic allocation of IP addresses to hosts.
A DHCP server intercepts DHCP requests and assigns IP addresses instead.
Thus, NAC enforcement occurs at the IP layer based on subnet and IP assign-
ment. A DCHP server is easy to install and configure, but is subject to various
forms of IP spoofing, providing limited security.

There are a number of other enforcement methods available from vendors.
The ones in the preceding list are perhaps the most common, and IEEE 802.1X is by
far the most commonly implemented solution.

	 5.2	E xtensible Authentication Protocol

The Extensible Authentication Protocol (EAP), defined in RFC 3748, acts as a
framework for network access and authentication protocols. EAP provides a set of
protocol messages that can encapsulate various authentication methods to be used
between a client and an authentication server. EAP can operate over a variety of
network and link level facilities, including point-to-point links, LANs, and other
networks, and can accommodate the authentication needs of the various links and
networks. Figure 5.2 illustrates the protocol layers that form the context for EAP.

Authentication Methods

EAP supports multiple authentication methods. This is what is meant by referring
to EAP as extensible. EAP provides a generic transport service for the exchange of
authentication information between a client system and an authentication server.
The basic EAP transport service is extended by using a specific authentication proto-
col, or method, that is installed in both the EAP client and the authentication server.

Figure 5.2  EAP Layered Context

Authentication
methods

EAP
layer

Data link
layer

Extensible Authentication Protocol (EAP)

IEEE 802.1X
EAP over LAN (EAPOL)

EAP-
TLS

EAP-
TTLS

EAP-
PSK

EAP-
IKEv2

PPP 802.3
Ethernet

802.11
WLAN Other

Other

M05_STAL4855_06_GE_C05.indd 164 8/9/16 9:03 PM

5.2 / Extensible Authentication Protocol  165

Numerous methods have been defined to work over EAP. The following are
commonly supported EAP methods:

■■ EAP-TLS (EAP Transport Layer Security): EAP-TLS (RFC 5216) defines
how the TLS protocol (described in Chapter 6) can be encapsulated in EAP
messages. EAP-TLS uses the handshake protocol in TLS, not its encryption
method. Client and server authenticate each other using digital certificates.
Client generates a pre-master secret key by encrypting a random number with
the server’s public key and sends it to the server. Both client and server use the
pre-master to generate the same secret key.

■■ EAP-TTLS (EAP Tunneled TLS): EAP-TTLS is like EAP-TLS, except only
the server has a certificate to authenticate itself to the client first. As in EAP-
TLS, a secure connection (the “tunnel”) is established with secret keys, but
that connection is used to continue the authentication process by authenti-
cating the client and possibly the server again using any EAP method or
legacy method such as PAP (Password Authentication Protocol) and CHAP
(Challenge-Handshake Authentication Protocol). EAP-TTLS is defined in
RFC 5281.

■■ EAP-GPSK (EAP Generalized Pre-Shared Key): EAP-GPSK, defined in
RFC 5433, is an EAP method for mutual authentication and session key deri-
vation using a Pre-Shared Key (PSK). EAP-GPSK specifies an EAP method
based on pre-shared keys and employs secret key-based cryptographic algo-
rithms. Hence, this method is efficient in terms of message flows and com-
putational costs, but requires the existence of pre-shared keys between each
peer and EAP server. The set up of these pairwise secret keys is part of the
peer registration, and thus, must satisfy the system preconditions. It provides
a protected communication channel when mutual authentication is success-
ful for both parties to communicate over and is designed for authentication
over insecure networks such as IEEE 802.11. EAP-GPSK does not require
any public-key cryptography. The EAP method protocol exchange is done in a
minimum of four messages.

■■ EAP-IKEv2: It is based on the Internet Key Exchange protocol version 2
(IKEv2), which is described in Chapter 9. It supports mutual authentication
and session key establishment using a variety of methods. EAP-TLS is defined
in RFC 5106.

EAP Exchanges

Whatever method is used for authentication, the authentication information and
authentication protocol information are carried in EAP messages.

RFC 3748 defines the goal of the exchange of EAP messages to be successful
authentication. In the context of RFC 3748, successful authentication is an exchange
of EAP messages, as a result of which the authenticator decides to allow access
by the peer, and the peer decides to use this access. The authenticator’s decision
typically involves both authentication and authorization aspects; the peer may
successfully authenticate to the authenticator, but access may be denied by the
authenticator due to policy reasons.

M05_STAL4855_06_GE_C05.indd 165 8/9/16 9:03 PM

166   chapter 5 / Network Access Control and Cloud Security

Figure 5.3 indicates a typical arrangement in which EAP is used. The follow-
ing components are involved:

■■ EAP peer: Client computer that is attempting to access a network.

■■ EAP authenticator: An access point or NAS that requires EAP authentication
prior to granting access to a network.

■■ Authentication server: A server computer that negotiates the use of a specific
EAP method with an EAP peer, validates the EAP peer’s credentials, and
authorizes access to the network. Typically, the authentication server is a
Remote Authentication Dial-In User Service (RADIUS) server.

The authentication server functions as a backend server that can authenti-
cate peers as a service to a number of EAP authenticators. The EAP authentica-
tor then makes the decision of whether to grant access. This is referred to as the
EAP pass-through mode. Less commonly, the authenticator takes over the role of
the EAP server; that is, only two parties are involved in the EAP execution.

As a first step, a lower-level protocol, such as PPP (point-to-point protocol)
or IEEE 802.1X, is used to connect to the EAP authenticator. The software entity
in the EAP peer that operates at this level is referred to as the supplicant. EAP
messages containing the appropriate information for a chosen EAP method are
then exchanged between the EAP peer and the authentication server.

EAP messages may include the following fields:

■■ Code: Identifies the Type of EAP message. The codes are Request (1),
Response (2), Success (3), and Failure (4).

■■ Identifier: Used to match Responses with Requests.

■■ Length: Indicates the length, in octets, of the EAP message, including the
Code, Identifier, Length, and Data fields.

Figure 5.3  EAP Protocol Exchanges

Method

EAP peer/
authenticator

EAP layer

Lower layer

EAP
authenticator

EAP layer

Lower layer

Method

EAP peer/
authenticator

EAP layer

Lower layer
RADIUS

EAP
messages

EAP
messages

802.1X,
PPP

EAP peer
EAP authenticator Authentication server

(RADIUS)

M05_STAL4855_06_GE_C05.indd 166 8/9/16 9:03 PM

5.2 / Extensible Authentication Protocol  167

■■ Data: Contains information related to authentication. Typically, the Data field
consists of a Type subfield, indicating the type of data carried, and a Type-Data
field.

The Success and Failure messages do not include a Data field.
The EAP authentication exchange proceeds as follows. After a lower-level

exchange that established the need for an EAP exchange, the authenticator sends a
Request to the peer to request an identity, and the peer sends a Response with the
identity information. This is followed by a sequence of Requests by the authentica-
tor and Responses by the peer for the exchange of authentication information. The
information exchanged and the number of Request–Response exchanges needed
depend on the authentication method. The conversation continues until either
(1) the authenticator determines that it cannot authenticate the peer and transmits
an EAP Failure or (2) the authenticator determines that successful authentication
has occurred and transmits an EAP Success.

Figure 5.4 gives an example of an EAP exchange. Not shown in the figure is a
message or signal sent from the EAP peer to the authenticator using some protocol
other than EAP and requesting an EAP exchange to grant network access. One
protocol used for this purpose is IEEE 802.1X, discussed in the next section. The
first pair of EAP Request and Response messages is of Type identity, in which the
authenticator requests the peer’s identity, and the peer returns its claimed identity
in the Response message. This Response is passed through the authenticator to the
authentication server. Subsequent EAP messages are exchanged between the peer
and the authentication server.

Figure 5.4  EAP Message Flow in Pass-Through Mode

EAP peer

EAP-Response/Identity

EAP-Request/Identity

EAP authenticator Authentication server
(RADIUS)

EAP-Response/Auth

EAP-Request/Auth

EAP-Response/Auth

EAP-Request/Auth

EAP-Success/Failure

M05_STAL4855_06_GE_C05.indd 167 8/9/16 9:03 PM

168   chapter 5 / Network Access Control and Cloud Security

Upon receiving the identity Response message from the peer, the server
selects an EAP method and sends the first EAP message with a Type field related
to an authentication method. If the peer supports and accepts the selected EAP
method, it replies with the corresponding Response message of the same type.
Otherwise, the peer sends a NAK, and the EAP server either selects another EAP
method or aborts the EAP execution with a failure message. The selected EAP
method determines the number of Request/Response pairs. During the exchange
the appropriate authentication information, including key material, is exchanged.
The exchange ends when the server determines that authentication has succeeded
or that no further attempt can be made and authentication has failed.

	 5.3	IEEE 802.1X Port-Based Network Access Control

IEEE 802.1X Port-Based Network Access Control was designed to provide access
control functions for LANs. Table 5.1 briefly defines key terms used in the IEEE
802.11 standard. The terms supplicant, network access point, and authentication

Authenticator
An entity at one end of a point-to-point LAN segment that facilities authentication of the entity to the other
end of the link.

Authentication exchange

The two-party conversation between systems performing an authentication process.

Authentication process

The cryptographic operations and supporting data frames that perform the actual authentication.

Authentication server (AS)
An entity that provides an authentication service to an authenticator. This service determines, from the
credentials provided by supplicant, whether the supplicant is authorized to access the services provided by
the system in which the authenticator resides.

Authentication transport
The datagram session that actively transfers the authentication exchange between two systems.

Bridge port
A port of an IEEE 802.1D or 802.1Q bridge.

Edge port
A bridge port attached to a LAN that has no other bridges attached to it.

Network access port
A point of attachment of a system to a LAN. It can be a physical port, such as a single LAN MAC attached to
a physical LAN segment, or a logical port, for example, an IEEE 802.11 association between a station and an
access point.

Port access entity (PAE)
The protocol entity associated with a port. It can support the protocol functionality associated with the
authenticator, the supplicant, or both.

Supplicant
An entity at one end of a point-to-point LAN segment that seeks to be authenticated by an authenticator
attached to the other end of that link.

Table 5.1  Terminology Related to IEEE 802.1X

M05_STAL4855_06_GE_C05.indd 168 8/9/16 9:03 PM

5.3 / IEEE 802.1X Port-Based Network Access Control  169

server correspond to the EAP terms peer, authenticator, and authentication server,
respectively.

Until the AS authenticates a supplicant (using an authentication protocol),
the authenticator only passes control and authentication messages between the sup-
plicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data
channel is blocked. Once a supplicant is authenticated and keys are provided, the
authenticator can forward data from the supplicant, subject to predefined access
control limitations for the supplicant to the network. Under these circumstances,
the data channel is unblocked.

As indicated in Figure 5.5, 802.1X uses the concepts of controlled and uncon-
trolled ports. Ports are logical entities defined within the authenticator and refer to
physical network connections. Each logical port is mapped to one of these two types
of physical ports. An uncontrolled port allows the exchange of protocol data units
(PDUs) between the supplicant and the AS, regardless of the authentication state
of the supplicant. A controlled port allows the exchange of PDUs between a sup-
plicant and other systems on the network only if the current state of the supplicant
authorizes such an exchange.

The essential element defined in 802.1X is a protocol known as EAPOL (EAP
over LAN). EAPOL operates at the network layers and makes use of an IEEE 802
LAN, such as Ethernet or Wi-Fi, at the link level. EAPOL enables a supplicant to
communicate with an authenticator and supports the exchange of EAP packets for
authentication.

Figure 5.5  802.1X Access Control

Supplicant

Network
access point

Uncontrolled
port

Controlled
port

Authentication server

Network or Internet

M05_STAL4855_06_GE_C05.indd 169 8/9/16 9:03 PM

170   chapter 5 / Network Access Control and Cloud Security

The most common EAPOL packets are listed in Table 5.2. When the supplicant
first connects to the LAN, it does not know the MAC address of the authenticator.
Actually it doesn’t know whether there is an authenticator present at all. By send-
ing an EAPOL-Start packet to a special group-multicast address reserved for IEEE
802.1X authenticators, a supplicant can determine whether an authenticator is pres-
ent and let it know that the supplicant is ready. In many cases, the authenticator will
already be notified that a new device has connected from some hardware notifica-
tion. For example, a hub knows that a cable is plugged in before the device sends
any data. In this case the authenticator may preempt the Start message with its own
message. In either case the authenticator sends an EAP-Request Identity message
encapsulated in an EAPOL-EAP packet. The EAPOL-EAP is the EAPOL frame
type used for transporting EAP packets.

The authenticator uses the EAP-Key packet to send cryptographic keys to the
supplicant once it has decided to admit it to the network. The EAP-Logoff packet
type indicates that the supplicant wishes to be disconnected from the network.

The EAPOL packet format includes the following fields:

■■ Protocol version: version of EAPOL.

■■ Packet type: indicates start, EAP, key, logoff, etc.

■■ Packet body length: If the packet includes a body, this field indicates the body
length.

■■ Packet body: The payload for this EAPOL packet. An example is an EAP
packet.

Figure 5.6 shows an example of exchange using EAPOL. In Chapter 7, we
examine the use of EAP and EAPOL in the context of IEEE 802.11 wireless LAN
security.

	 5.4	C loud Computing

There is an increasingly prominent trend in many organizations to move a substan-
tial portion of or even all information technology (IT) operations to an Internet-
connected infrastructure known as enterprise cloud computing. This section provides
an overview of cloud computing. For a more detailed treatment, see [STAL16b].

Frame Type Definition

EAPOL-EAP Contains an encapsulated EAP packet.

EAPOL-Start A supplicant can issue this packet instead of waiting for
a challenge from the authenticator.

EAPOL-Logoff Used to return the state of the port to unauthorized when
the supplicant is finished using the network.

EAPOL-Key Used to exchange cryptographic keying information.

Table 5.2  Common EAPOL Frame Types

M05_STAL4855_06_GE_C05.indd 170 8/9/16 9:03 PM

5.4 / Cloud Computing  171

Cloud Computing Elements

NIST defines cloud computing, in NIST SP 800-145 (The NIST Definition of Cloud
Computing), as follows:

Figure 5.6  Example Timing Diagram for IEEE 802.1X

EAP peer

EAPOL-Start

EAPOL-EAP (EAP-Request/Identity)

EAPOL-EAP (EAP-Response/Identity)

EAP authenticator Authentication server
(RADIUS)

EAPOL-Logo�

EAPOL-EAP (EAP-Response/Auth)

EAPOL-EAP (EAP-Request/Auth)

EAPOL-EAP (EAP-Response/Auth)

EAPOL-EAP (EAP-Request/Auth)

EAPOL-EAP (EAP-Success)

Cloud computing: A model for enabling ubiquitous, convenient, on-demand net-
work access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This
cloud model promotes availability and is composed of five essential characteris-
tics, three service models, and four deployment models.

The definition refers to various models and characteristics, whose relationship is
illustrated in Figure 5.7. The essential characteristics of cloud computing include the
following:

■■ Broad network access: Capabilities are available over the network and
accessed through standard mechanisms that promote use by heterogeneous

M05_STAL4855_06_GE_C05.indd 171 8/9/16 9:03 PM

172   chapter 5 / Network Access Control and Cloud Security

thin or thick client platforms (e.g., mobile phones, laptops, and PDAs) as well
as other traditional or cloud-based software services.

■■ Rapid elasticity: Cloud computing gives you the ability to expand and reduce
resources according to your specific service requirement. For example, you
may need a large number of server resources for the duration of a specific task.
You can then release these resources upon completion of the task.

■■ Measured service: Cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and reported, provid-
ing transparency for both the provider and consumer of the utilized service.

■■ On-demand self-service: A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automati-
cally without requiring human interaction with each service provider. Because
the service is on demand, the resources are not permanent parts of your IT
infrastructure.

■■ Resource pooling: The provider’s computing resources are pooled to serve
multiple consumers using a multi-tenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand. There is a degree of location independence in that the customer

Figure 5.7  Cloud Computing Elements

Broad
Network Access

Resource Pooling

Rapid
Elasticity

E
ss

en
tia

l
C

ha
ra

ct
er

is
tic

s
Se

rv
ic

e
M

od
el

s
D

ep
lo

ym
en

t
M

od
el

s
Measured

Service
On-Demand
Self-Service

Public Private Hybrid Community

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

M05_STAL4855_06_GE_C05.indd 172 8/9/16 9:03 PM

5.4 / Cloud Computing  173

generally has no control or knowledge of the exact location of the provided
resources, but may be able to specify location at a higher level of abstraction
(e.g., country, state, or data center). Examples of resources include storage,
processing, memory, network bandwidth, and virtual machines. Even private
clouds tend to pool resources between different parts of the same organization.

NIST defines three service models, which can be viewed as nested service
alternatives:

■■ Software as a service (SaaS): The capability provided to the consumer is to use
the provider’s applications running on a cloud infrastructure. The applications
are accessible from various client devices through a thin client interface such as
a Web browser. Instead of obtaining desktop and server licenses for software
products it uses, an enterprise obtains the same functions from the cloud service.
SaaS saves the complexity of software installation, maintenance, upgrades, and
patches. Examples of services at this level are Gmail, Google’s e-mail service,
and Salesforce.com, which helps firms keep track of their customers.

■■ Platform as a service (PaaS): The capability provided to the consumer is to
deploy onto the cloud infrastructure consumer-created or acquired applica-
tions created using programming languages and tools supported by the pro-
vider. PaaS often provides middleware-style services such as database and
component services for use by applications. In effect, PaaS is an operating
system in the cloud.

■■ Infrastructure as a service (IaaS): The capability provided to the consumer is
to provision processing, storage, networks, and other fundamental computing
resources where the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. IaaS enables custom-
ers to combine basic computing services, such as number crunching and data
storage, to build highly adaptable computer systems.

NIST defines four deployment models:

■■ Public cloud: The cloud infrastructure is made available to the general public
or a large industry group and is owned by an organization selling cloud ser-
vices. The cloud provider is responsible both for the cloud infrastructure and
for the control of data and operations within the cloud.

■■ Private cloud: The cloud infrastructure is operated solely for an organization.
It may be managed by the organization or a third party and may exist on prem-
ise or off premise. The cloud provider (CP) is responsible only for the infra-
structure and not for the control.

■■ Community cloud: The cloud infrastructure is shared by several organizations
and supports a specific community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It may be managed by the
organizations or a third party and may exist on premise or off premise.

■■ Hybrid cloud: The cloud infrastructure is a composition of two or more clouds
(private, community, or public) that remain unique entities but are bound
together by standardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load balancing between clouds).

M05_STAL4855_06_GE_C05.indd 173 8/9/16 9:03 PM

http://Salesforce.com

174   chapter 5 / Network Access Control and Cloud Security

Figure 5.8 illustrates the typical cloud service context. An enterprise maintains
workstations within an enterprise LAN or set of LANs, which are connected by a
router through a network or the Internet to the cloud service provider. The cloud
service provider maintains a massive collection of servers, which it manages with a
variety of network management, redundancy, and security tools. In the figure, the
cloud infrastructure is shown as a collection of blade servers, which is a common
architecture.

Cloud Computing Reference Architecture

NIST SP 500-292 (NIST Cloud Computing Reference Architecture) establishes a
reference architecture, described as follows:

Figure 5.8  Cloud Computing Context

Router

Servers

LAN
switch

Cloud
service

provider
Network

or Internet

Router

LAN
switch

Enterprise
(Cloud user)

 The NIST cloud computing reference architecture focuses on the requirements
of “what” cloud services provide, not a “how to” design solution and implemen-
tation. The reference architecture is intended to facilitate the understanding of
the operational intricacies in cloud computing. It does not represent the system
architecture of a specific cloud computing system; instead it is a tool for describ-
ing, discussing, and developing a system-specific architecture using a common
framework of reference.

M05_STAL4855_06_GE_C05.indd 174 8/9/16 9:03 PM

5.4 / Cloud Computing  175

NIST developed the reference architecture with the following objectives
in mind:

■■ to illustrate and understand the various cloud services in the context of an
overall cloud computing conceptual model

■■ to provide a technical reference for consumers to understand, discuss, catego-
rize, and compare cloud services

■■ to facilitate the analysis of candidate standards for security, interoperability,
and portability and reference implementations

The reference architecture, depicted in Figure 5.9, defines five major actors in
terms of the roles and responsibilities:

■■ Cloud consumer: A person or organization that maintains a business relation-
ship with, and uses service from, cloud providers.

■■ Cloud provider: A person, organization, or entity responsible for making a
service available to interested parties.

■■ Cloud auditor: A party that can conduct independent assessment of cloud
services, information system operations, performance, and security of the
cloud implementation.

■■ Cloud broker: An entity that manages the use, performance, and delivery of
cloud services, and negotiates relationships between CPs and cloud consumers.

■■ Cloud carrier: An intermediary that provides connectivity and transport of
cloud services from CPs to cloud consumers.

The roles of the cloud consumer and provider have already been discussed. To
summarize, a cloud provider can provide one or more of the cloud services to meet
IT and business requirements of cloud consumers. For each of the three service

Figure 5.9  NIST Cloud Computing Reference Architecture

Cloud
consumer

Cloud
auditor

Service
intermediation

Service
aggregation

Service
arbitrage

Cloud
broker

Cloud provider

Security
audit

Performance
audit

Privacy
impact audit

SaaS
Service layer
Service orchestration Cloud

service
management

PaaS

Hardware

Physical resource layer

Facility

Resource abstraction
and control layer

IaaS

Business
support

Provisioning/
con�guration

Portability/
interoperability

Se
cu

ri
ty

P
ri

va
cy

Cloud carrier

M05_STAL4855_06_GE_C05.indd 175 8/9/16 9:03 PM

176   chapter 5 / Network Access Control and Cloud Security

models (SaaS, PaaS, IaaS), the CP provides the storage and processing facilities
needed to support that service model, together with a cloud interface for cloud
service consumers. For SaaS, the CP deploys, configures, maintains, and updates
the operation of the software applications on a cloud infrastructure so that the
services are provisioned at the expected service levels to cloud consumers. The
consumers of SaaS can be organizations that provide their members with access to
software applications, end users who directly use software applications, or software
application administrators who configure applications for end users.

For PaaS, the CP manages the computing infrastructure for the platform and
runs the cloud software that provides the components of the platform, such as run-
time software execution stack, databases, and other middleware components. Cloud
consumers of PaaS can employ the tools and execution resources provided by CPs to
develop, test, deploy, and manage the applications hosted in a cloud environment.

For IaaS, the CP acquires the physical computing resources underlying the
service, including the servers, networks, storage, and hosting infrastructure. The
IaaS cloud consumer in turn uses these computing resources, such as a virtual
computer, for their fundamental computing needs.

The cloud carrier is a networking facility that provides connectivity and trans-
port of cloud services between cloud consumers and CPs. Typically, a CP will set up
service level agreements (SLAs) with a cloud carrier to provide services consistent
with the level of SLAs offered to cloud consumers, and may require the cloud carrier
to provide dedicated and secure connections between cloud consumers and CPs.

A cloud broker is useful when cloud services are too complex for a cloud con-
sumer to easily manage. Three areas of support can be offered by a cloud broker:

■■ Service intermediation: These are value-added services, such as identity man-
agement, performance reporting, and enhanced security.

■■ Service aggregation: The broker combines multiple cloud services to meet
consumer needs not specifically addressed by a single CP, or to optimize per-
formance or minimize cost.

■■ Service arbitrage: This is similar to service aggregation except that the services
being aggregated are not fixed. Service arbitrage means a broker has the flexibil-
ity to choose services from multiple agencies. The cloud broker, for example, can
use a credit-scoring service to measure and select an agency with the best score.

A cloud auditor can evaluate the services provided by a CP in terms of secu-
rity controls, privacy impact, performance, and so on. The auditor is an independent
entity that can assure that the CP conforms to a set of standards.

	 5.5	C loud Security Risks and Countermeasures

In general terms, security controls in cloud computing are similar to the security
controls in any IT environment. However, because of the operational models and
technologies used to enable cloud service, cloud computing may present risks that
are specific to the cloud environment. The essential concept in this regard is that
the enterprise loses a substantial amount of control over resources, services, and
applications but must maintain accountability for security and privacy policies.

M05_STAL4855_06_GE_C05.indd 176 8/9/16 9:03 PM

5.5 / Cloud Security Risks and Countermeasures  177

The Cloud Security Alliance [CSA10] lists the following as the top cloud-
specific security threats, together with suggested countermeasures:

■■ Abuse and nefarious use of cloud computing: For many CPs, it is relatively
easy to register and begin using cloud services, some even offering free limited
trial periods. This enables attackers to get inside the cloud to conduct various
attacks, such as spamming, malicious code attacks, and denial of service. PaaS
providers have traditionally suffered most from this kind of attacks; however,
recent evidence shows that hackers have begun to target IaaS vendors as well.
The burden is on the CP to protect against such attacks, but cloud service cli-
ents must monitor activity with respect to their data and resources to detect
any malicious behavior.

Countermeasures include (1) stricter initial registration and valida-
tion processes; (2) enhanced credit card fraud monitoring and coordination;
(3) comprehensive introspection of customer network traffic; and (4) monitor-
ing public blacklists for one’s own network blocks.

■■ Insecure interfaces and APIs: CPs expose a set of software interfaces or APIs
that customers use to manage and interact with cloud services. The security
and availability of general cloud services are dependent upon the security of
these basic APIs. From authentication and access control to encryption and
activity monitoring, these interfaces must be designed to protect against both
accidental and malicious attempts to circumvent policy.

Countermeasures include (1) analyzing the security model of CP inter-
faces; (2) ensuring that strong authentication and access controls are imple-
mented in concert with encrypted transmission; and (3) understanding the
dependency chain associated with the API.

■■ Malicious insiders: Under the cloud computing paradigm, an organization
relinquishes direct control over many aspects of security and, in doing so, con-
fers an unprecedented level of trust onto the CP. One grave concern is the
risk of malicious insider activity. Cloud architectures necessitate certain roles
that are extremely high risk. Examples include CP system administrators and
managed security service providers.

Countermeasures include the following: (1) enforce strict supply chain
management and conduct a comprehensive supplier assessment; (2) specify
human resource requirements as part of legal contract; (3) require transpar-
ency into overall information security and management practices, as well as
compliance reporting; and (4) determine security breach notification processes.

■■ Shared technology issues: IaaS vendors deliver their services in a scalable way
by sharing infrastructure. Often, the underlying components that make up this
infrastructure (CPU caches, GPUs, etc.) were not designed to offer strong iso-
lation properties for a multi-tenant architecture. CPs typically approach this
risk by the use of isolated virtual machines for individual clients. This approach
is still vulnerable to attack, by both insiders and outsiders, and so can only be a
part of an overall security strategy.

Countermeasures include the following: (1) implement security best
practices for installation/configuration; (2) monitor environment for unauthor-
ized changes/activity; (3) promote strong authentication and access control

M05_STAL4855_06_GE_C05.indd 177 8/9/16 9:03 PM

178   chapter 5 / Network Access Control and Cloud Security

for administrative access and operations; (4) enforce SLAs for patching and
vulnerability remediation; and (5) conduct vulnerability scanning and
configuration audits.

■■ Data loss or leakage: For many clients, the most devastating impact from a
security breach is the loss or leakage of data. We address this issue in the next
subsection.

Countermeasures include the following: (1) implement strong API
access control; (2) encrypt and protect integrity of data in transit; (3) analyze
data protection at both design and run time; and (4) implement strong key
generation, storage and management, and destruction practices.

■■ Account or service hijacking: Account or service hijacking, usually with stolen
credentials, remains a top threat. With stolen credentials, attackers can often
access critical areas of deployed cloud computing services, allowing them to
compromise the confidentiality, integrity, and availability of those services.

Countermeasures include the following: (1) prohibit the sharing of
account credentials between users and services; (2) leverage strong two-factor
authentication techniques where possible; (3) employ proactive monitor-
ing to detect unauthorized activity; and (4) understand CP security policies
and SLAs.

■■ Unknown risk profile: In using cloud infrastructures, the client necessarily
cedes control to the CP on a number of issues that may affect security. Thus
the client must pay attention to and clearly define the roles and responsibili-
ties involved for managing risks. For example, employees may deploy applica-
tions and data resources at the CP without observing the normal policies and
procedures for privacy, security, and oversight.

Countermeasures include (1) disclosure of applicable logs and data;
(2) partial/full disclosure of infrastructure details (e.g., patch levels and
firewalls); and (3) monitoring and alerting on necessary information.

Similar lists have been developed by the European Network and Information
Security Agency [ENIS09] and NIST [JANS11].

	 5.6	Da ta Protection in the Cloud

As can be seen from the previous section, there are numerous aspects to cloud
security and numerous approaches to providing cloud security measures.
A further example is seen in the NIST guidelines for cloud security, specified in
SP-800-14 and listed in Table 5.3. Thus, the topic of cloud security is well beyond
the scope of this chapter. In this section, we focus on one specific element of
cloud security.

There are many ways to compromise data. Deletion or alteration of records
without a backup of the original content is an obvious example. Unlinking a record
from a larger context may render it unrecoverable, as can storage on unreliable
media. Loss of an encoding key may result in effective destruction. Finally, unau-
thorized parties must be prevented from gaining access to sensitive data.

M05_STAL4855_06_GE_C05.indd 178 8/9/16 9:03 PM

5.6 / Data Protection in the Cloud  179

Governance
Extend organizational practices pertaining to the policies, procedures, and standards used for application
development and service provisioning in the cloud, as well as the design, implementation, testing, use, and
monitoring of deployed or engaged services.

Put in place audit mechanisms and tools to ensure organizational practices are followed throughout the
system life cycle.

Compliance
Understand the various types of laws and regulations that impose security and privacy obligations on the
organization and potentially impact cloud computing initiatives, particularly those involving data location,
privacy and security controls, records management, and electronic discovery requirements.

Review and assess the cloud provider’s offerings with respect to the organizational requirements to be met
and ensure that the contract terms adequately meet the requirements.

Ensure that the cloud provider’s electronic discovery capabilities and processes do not compromise the
privacy or security of data and applications.

Trust
Ensure that service arrangements have sufficient means to allow visibility into the security and privacy
controls and processes employed by the cloud provider, and their performance over time.

Establish clear, exclusive ownership rights over data.
Institute a risk management program that is flexible enough to adapt to the constantly evolving and

shifting risk landscape for the life cycle of the system.
Continuously monitor the security state of the information system to support ongoing risk management

decisions.

Architecture
Understand the underlying technologies that the cloud provider uses to provision services, including the
implications that the technical controls involved have on the security and privacy of the system, over the full
system life cycle and across all system components.

Identity and access management
Ensure that adequate safeguards are in place to secure authentication, authorization, and other identity and
access management functions, and are suitable for the organization.

Software isolation
Understand virtualization and other logical isolation techniques that the cloud provider employs in its
multi-tenant software architecture, and assess the risks involved for the organization.

Data protection
Evaluate the suitability of the cloud provider’s data management solutions for the organizational data
concerned and the ability to control access to data, to secure data while at rest, in transit, and in use, and to
sanitize data.

Take into consideration the risk of collating organizational data with those of other organizations whose
threat profiles are high or whose data collectively represent significant concentrated value.

Fully understand and weigh the risks involved in cryptographic key management with the facilities
available in the cloud environment and the processes established by the cloud provider.

Availability
Understand the contract provisions and procedures for availability, data backup and recovery, and disaster
recovery, and ensure that they meet the organization’s continuity and contingency planning requirements.

Ensure that during an intermediate or prolonged disruption or a serious disaster, critical operations
can be immediately resumed, and that all operations can be eventually reinstituted in a timely and organized
manner.

Incident response
Understand the contract provisions and procedures for incident response and ensure that they meet the
requirements of the organization.

Table 5.3  NIST Guidelines on Security and Privacy Issues and Recommendations

M05_STAL4855_06_GE_C05.indd 179 8/9/16 9:03 PM

180   chapter 5 / Network Access Control and Cloud Security

Ensure that the cloud provider has a transparent response process in place and sufficient mechanisms to
share information during and after an incident.

Ensure that the organization can respond to incidents in a coordinated fashion with the cloud provider in
accordance with their respective roles and responsibilities for the computing environment.

Table 5.3  Continued

The threat of data compromise increases in the cloud, due to the number of
and interactions between risks and challenges that are either unique to the cloud or
more dangerous because of the architectural or operational characteristics of the
cloud environment.

Database environments used in cloud computing can vary significantly. Some
providers support a multi-instance model, which provides a unique DBMS running
on a virtual machine instance for each cloud subscriber. This gives the subscriber
complete control over role definition, user authorization, and other administrative
tasks related to security. Other providers support a multi-tenant model, which pro-
vides a predefined environment for the cloud subscriber that is shared with other
tenants, typically through tagging data with a subscriber identifier. Tagging gives
the appearance of exclusive use of the instance, but relies on the CP to establish and
maintain a sound secure database environment.

Data must be secured while at rest, in transit, and in use, and access to the
data must be controlled. The client can employ encryption to protect data in transit,
though this involves key management responsibilities for the CP. The client can
enforce access control techniques but, again, the CP is involved to some extent
depending on the service model used.

For data at rest, the ideal security measure is for the client to encrypt the data-
base and only store encrypted data in the cloud, with the CP having no access to the
encryption key. So long as the key remains secure, the CP has no ability to read the
data, although corruption and other denial-of-service attacks remain a risk.

A straightforward solution to the security problem in this context is to encrypt
the entire database and not provide the encryption/decryption keys to the service
provider. This solution by itself is inflexible. The user has little ability to access
individual data items based on searches or indexing on key parameters, but rather
would have to download entire tables from the database, decrypt the tables, and
work with the results. To provide more flexibility, it must be possible to work with
the database in its encrypted form.

An example of such an approach, depicted in Figure 5.10, is reported in
[DAMI05] and [DAMI03]. A similar approach is described in [HACI02]. Four enti-
ties are involved:

■■ Data owner: An organization that produces data to be made available for
controlled release, either within the organization or to external users.

■■ User: Human entity that presents requests (queries) to the system. The user
could be an employee of the organization who is granted access to the data-
base via the server, or a user external to the organization who, after authenti-
cation, is granted access.

■■ Client: Frontend that transforms user queries into queries on the encrypted
data stored on the server.

M05_STAL4855_06_GE_C05.indd 180 8/9/16 9:03 PM

5.6 / Data Protection in the Cloud  181

■■ Server: An organization that receives the encrypted data from a data owner
and makes them available for distribution to clients. The server could in fact
be owned by the data owner but, more typically, is a facility owned and main-
tained by an external provider. For our discussion, the server is a cloud server.

Before continuing this discussion, we need to define some database terms.
In relational database parlance, the basic building block is a relation, which is a flat
table. Rows are referred to as tuples, and columns are referred to as attributes.
A primary key is defined to be a portion of a row used to uniquely identify a row in
a table; the primary key consists of one or more column names.2 For example, in
an employee table, the employee ID is sufficient to uniquely identify a row in a
particular table.

Let us first examine the simplest possible arrangement based on this scenario.
Suppose that each individual item in the database is encrypted separately, all using
the same encryption key. The encrypted database is stored at the server, but the
server does not have the encryption key. Thus, the data are secure at the server.
Even if someone were able to hack into the server’s system, all he or she would have
access to is encrypted data. The client system does have a copy of the encryption
key. A user at the client can retrieve a record from the database with the following
sequence:

1.	 The user issues a query for fields from one or more records with a specific
value of the primary key.

2Note that a primary key has nothing to do with cryptographic keys. A primary key in a database is a
means of indexing into the database.

Figure 5.10  An Encryption Scheme for a Cloud-Based Database

Query
processor

1. Original query
Metadata

4. Plaintext
result

2. Transformed
query

3. Encrypted
result

Client

User
Data owner

Cloud
server

Encrypt/
Decrypt

Query
executor

Metadata

Metadata

Encrypted
database

Database

M05_STAL4855_06_GE_C05.indd 181 8/9/16 9:03 PM

182   chapter 5 / Network Access Control and Cloud Security

2.	 The query processor at the client encrypts the primary key, modifies the query
accordingly, and transmits the query to the server.

3.	 The server processes the query using the encrypted value of the primary key
and returns the appropriate record or records.

4.	 The query processor decrypts the data and returns the results.

This method is certainly straightforward but is quite limited. For example, sup-
pose the Employee table contains a salary attribute and the user wishes to retrieve
all records for salaries less than $70K. There is no obvious way to do this, because
the attribute value for salary in each record is encrypted. The set of encrypted values
does not preserve the ordering of values in the original attribute.

There are a number of ways to extend the functionality of this approach. For
example, an unencrypted index value can be associated with a given attribute and
the table can be partitioned based on these index values, enabling a user to retrieve
a certain portion of the table. The details of such schemes are beyond our scope.
See [STAL15] for more detail.

	 5.7	C loud Security as a Service

The term Security as a Service (SecaaS) has generally meant a package of security
services offered by a service provider that offloads much of the security respon-
sibility from an enterprise to the security service provider. Among the services
typically provided are authentication, antivirus, antimalware/-spyware, intrusion
detection, and security event management. In the context of cloud computing,
cloud security as a service, designated SecaaS, is a segment of the SaaS offering
of a CP.

The Cloud Security Alliance defines SecaaS as the provision of security
applications and services via the cloud either to cloud-based infrastructure and soft-
ware or from the cloud to the customers’ on-premise systems [CSA11b]. The Cloud
Security Alliance has identified the following SecaaS categories of service:

■■ Identity and access management

■■ Data loss prevention

■■ Web security

■■ E-mail security

■■ Security assessments

■■ Intrusion management

■■ Security information and event management

■■ Encryption

■■ Business continuity and disaster recovery

■■ Network security

In this section, we examine these categories with a focus on security of the
cloud-based infrastructure and services (Figure 5.11).

M05_STAL4855_06_GE_C05.indd 182 8/9/16 9:03 PM

5.7 / Cloud Security as a Service  183

Identity and access management (IAM) includes people, processes, and
systems that are used to manage access to enterprise resources by assuring that the
identity of an entity is verified, and then granting the correct level of access based
on this assured identity. One aspect of identity management is identity provision-
ing, which has to do with providing access to identified users and subsequently
deprovisioning, or deny access, to users when the client enterprise designates such
users as no longer having access to enterprise resources in the cloud. Another aspect
of identity management is for the cloud to participate in the federated identity
management scheme (see Chapter 4) used by the client enterprise. Among other
requirements, the cloud service provider (CSP) must be able to exchange identity
attributes with the enterprise’s chosen identity provider.

The access management portion of IAM involves authentication and access
control services. For example, the CSP must be able to authenticate users in a
trustworthy manner. The access control requirements in SPI environments include
establishing trusted user profile and policy information, using it to control access
within the cloud service, and doing this in an auditable way.

Data loss prevention (DLP) is the monitoring, protecting, and verifying the
security of data at rest, in motion, and in use. Much of DLP can be implemented

Figure 5.11  Elements of Cloud Security as a Service

Cloud service clients and adversaries

Identity and access management
Network security

Data loss
prevention

Web security
Intrusion
management

Encryption

Email security

Security assessments
Security information and
 event management
Business continuity and
 disaster recovery

M05_STAL4855_06_GE_C05.indd 183 8/9/16 9:04 PM

184   chapter 5 / Network Access Control and Cloud Security

by the cloud client, such as discussed in Section 5.6. The CSP can also provide DLP
services, such as implementing rules about what functions can be performed on data
in various contexts.

Web security is real-time protection offered either on premise through soft-
ware/appliance installation or via the cloud by proxying or redirecting Web traffic
to the CP. This provides an added layer of protection on top of things like antivi-
ruses to prevent malware from entering the enterprise via activities such as Web
browsing. In addition to protecting against malware, a cloud-based Web security
service might include usage policy enforcement, data backup, traffic control, and
Web access control.

A CSP may provide a Web-based e-mail service, for which security measures
are needed. E-mail security provides control over inbound and outbound e-mail,
protecting the organization from phishing, malicious attachments, enforcing corporate
polices such as acceptable use and spam prevention. The CSP may also incorporate
digital signatures on all e-mail clients and provide optional e-mail encryption.

Security assessments are third-part audits of cloud services. While this service
is outside the province of the CSP, the CSP can provide tools and access points to
facilitate various assessment activities.

Intrusion management encompasses intrusion detection, prevention, and
response. The core of this service is the implementation of intrusion detection sys-
tems (IDSs) and intrusion prevention systems (IPSs) at entry points to the cloud
and on servers in the cloud. An IDS is a set of automated tools designed to detect
unauthorized access to a host system. We discuss this in Chapter 11. An IPS incor-
porates IDS functionality but also includes mechanisms designed to block traffic
from intruders.

Security information and event management (SIEM) aggregates (via push or
pull mechanisms) log and event data from virtual and real networks, applications,
and systems. This information is then correlated and analyzed to provide real-time
reporting and alerting on information/events that may require intervention or other
type of response. The CSP typically provides an integrated service that can put
together information from a variety of sources both within the cloud and within the
client enterprise network.

Encryption is a pervasive service that can be provided for data at rest in the
cloud, e-mail traffic, client-specific network management information, and iden-
tity information. Encryption services provided by the CSP involve a range of com-
plex issues, including key management, how to implement virtual private network
(VPN) services in the cloud, application encryption, and data content access.

Business continuity and disaster recovery comprise measures and mechanisms
to ensure operational resiliency in the event of any service interruptions. This is
an area where the CSP, because of economies of scale, can offer obvious benefits
to a cloud service client [WOOD10]. The CSP can provide backup at multiple
locations, with reliable failover and disaster recovery facilities. This service must
include a flexible infrastructure, redundancy of functions and hardware, monitored
operations, geographically distributed data centers, and network survivability.

Network security consists of security services that allocate access, distribute,
monitor, and protect the underlying resource services. Services include perimeter
and server firewalls and denial-of-service protection. Many of the other services

M05_STAL4855_06_GE_C05.indd 184 8/9/16 9:04 PM

5.8 / Addressing Cloud Computing Security Concerns  185

listed in this section, including intrusion management, identity and access man-
agement, data loss protection, and Web security, also contribute to the network
security service.

	 5.8	 Addressing Cloud Computing Security Concerns

Numerous documents have been developed to guide businesses thinking about the
security issues associated with cloud computing. In addition to SP 800-144, which
provides overall guidance, NIST has issued SP 800-146 (Cloud Computing Synopsis
and Recommendations, May 2012). NIST’s recommendations systematically con-
sider each of the major types of cloud services consumed by businesses including
Software as a Service (SaaS), Infrastructure as a Service (IaaS), and Platform as
a Service (PaaS). While security issues vary somewhat depending on the type of
cloud service, there are multiple NIST recommendations that are independent of
service type. Not surprisingly, NIST recommends selecting cloud providers that
support strong encryption, have appropriate redundancy mechanisms in place,
employ authentication mechanisms, and offer subscribers sufficient visibility about
mechanisms used to protect subscribers from other subscribers and the provider.
SP 800-146 also lists the overall security controls that are relevant in a cloud com-
puting environment and that must be assigned to the different cloud actors. These
are shown in Table 5.4.

As more businesses incorporate cloud services into their enterprise net-
work infrastructures, cloud computing security will persist as an important issue.
Examples of cloud computing security failures have the potential to have a chilling
effect on business interest in cloud services and this is inspiring service providers
to be serious about incorporating security mechanisms that will allay concerns of
potential subscribers. Some service providers have moved their operations to Tier 4
data centers to address user concerns about availability and redundancy. Because so
many businesses remain reluctant to embrace cloud computing in a big way, cloud
service providers will have to continue to work hard to convince potential customers
that computing support for core business processes and mission critical applications
can be moved safely and securely to the cloud.

Technical Operational Management

Access Control

Audit and Accountability

Identification and Authentication

System and Communication
Protection

Awareness and Training

Configuration and Management

Contingency Planning

Incident Response

Maintenance

Media Protection

Physical and Environmental
Protection

Personnel Security System and
Information Integrity

Certification, Accreditation, and
Security Assessment

Planning Risk Assessment

System and Services Acquisition

Table 5.4  Control Functions and Classes

M05_STAL4855_06_GE_C05.indd 185 8/9/16 9:04 PM

186   chapter 5 / Network Access Control and Cloud Security

Key Terms

access requestor (AR)
authentication server
cloud
cloud auditor
cloud broker
cloud carrier
cloud computing
cloud consumer
cloud provider
community cloud
Dynamic Host Configuration

Protocol (DHCP)
EAP authenticator
EAP-GPSK

EAP-IKEv2
EAP over LAN (EAPOL)
EAP method
EAP pass-through mode
EAP peer
EAP-TLS
EAP-TTLS
Extensible Authentication

Protocol (EAP)
firewall
IEEE 802.1X
media gateway
Network Access Control

(NAC)

Network Access Server
(NAS)

Platform as a Service (PaaS)
policy server
private cloud
public cloud
Remote Access Server (RAS)
Security as a Service (SecaaS)
Software as a Service (SaaS)
supplicant
Virtual Local Area Network

(VLAN)

	 5.9	K ey Terms, Review Questions, and Problems

Review Questions
	 5.1	 Provide a brief definition of network access control.
	 5.2	 What is an EAP?
	 5.3	 List and briefly define four EAP authentication methods.
	 5.4	 What is DHCP? How useful is it to help achieve security of IP addresses?
	 5.5	 Why is EAPOL an essential element of IEEE 802.1X?
	 5.6	 What are the essential characteristics of cloud computing?
	 5.7	 List and briefly define the deployment models of cloud computing.
	 5.8	 What is the cloud computing reference architecture?
	 5.9	 Describe some of the main cloud-specific security threats.

Problems
	 5.1	 Investigate the network access control scheme used at your school or place of

employment. Draw a diagram and describe the principal components.
	 5.2	 Figure 5.3 suggests that EAP can be described in the context of a four-layer model.

Indicate the functions and formats of each of the four layers. You may need to refer
to RFC 3748.

	 5.3	 List some commonly used cloud-based data services. Explore and compare these
services based on their use of encryption, flexibility, efficiency, speed, and ease of
use. Study security breaches on these services in recent past. What changes were
made by the services after these attacks?

M05_STAL4855_06_GE_C05.indd 186 8/9/16 9:04 PM

187

6.1	 Web Security Considerations

Web Security Threats
Web Traffic Security Approaches

6.2	 Transport Layer Security

TLS Architecture
TLS Record Protocol
Change Cipher Spec Protocol
Alert Protocol
Handshake Protocol
Cryptographic Computations
Heartbeat Protocol
SSL/TLS Attacks
TLSv1.3

6.3	 HTTPS

Connection Initiation
Connection Closure

6.4	 Secure Shell (SSH)

Transport Layer Protocol
User Authentication Protocol
Connection Protocol

6.5	 Key Terms, Review Questions, and Problems

Chapter

Transport-Level Security

M06_STAL4855_06_GE_C06.indd 187 8/9/16 9:10 PM

188   chapter 6 / Transport-Level Security

Virtually all businesses, most government agencies, and many individuals now have
Web sites. The number of individuals and companies with Internet access is expanding
rapidly and all of these have graphical Web browsers. As a result, businesses are enthu-
siastic about setting up facilities on the Web for electronic commerce. But the reality
is that the Internet and the Web are extremely vulnerable to compromises of various
sorts. As businesses wake up to this reality, the demand for secure Web services grows.

The topic of Web security is a broad one and can easily fill a book. In this chap-
ter, we begin with a discussion of the general requirements for Web security and then
focus on three standardized schemes that are becoming increasingly important as part
of Web commerce and that focus on security at the transport layer: SSL/TLS, HTTPS,
and SSH.

	 6.1	 Web Security Considerations

The World Wide Web is fundamentally a client/server application running over the
Internet and TCP/IP intranets. As such, the security tools and approaches discussed
so far in this book are relevant to the issue of Web security. However, the following
characteristics of Web usage suggest the need for tailored security tools:

■■ Although Web browsers are very easy to use, Web servers are relatively easy
to configure and manage, and Web content is increasingly easy to develop, the
underlying software is extraordinarily complex. This complex software may
hide many potential security flaws. The short history of the Web is filled with
examples of new and upgraded systems, properly installed, that are vulnerable
to a variety of security attacks.

■■ A Web server can be exploited as a launching pad into the corporation’s or
agency’s entire computer complex. Once the Web server is subverted, an
attacker may be able to gain access to data and systems not part of the Web
itself but connected to the server at the local site.

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Summarize Web security threats and Web traffic security approaches.

◆◆ Present an overview of Transport Layer Security (TLS).

◆◆ Understand the differences between Secure Sockets Layer and Transport
Layer Security.

◆◆ Compare the pseudorandom function used in Transport Layer Security
with those discussed earlier in the book.

◆◆ Present an overview of HTTPS (HTTP over SSL).

◆◆ Present an overview of Secure Shell (SSH).

M06_STAL4855_06_GE_C06.indd 188 8/9/16 9:10 PM

6.1 / Web Security Considerations  189

■■ Casual and untrained (in security matters) users are common clients for Web-
based services. Such users are not necessarily aware of the security risks that
exist and do not have the tools or knowledge to take effective countermeasures.

Web Security Threats

Table 6.1 provides a summary of the types of security threats faced when using the
Web. One way to group these threats is in terms of passive and active attacks. Passive
attacks include eavesdropping on network traffic between browser and server and
gaining access to information on a Web site that is supposed to be restricted. Active
attacks include impersonating another user, altering messages in transit between
client and server, and altering information on a Web site.

Another way to classify Web security threats is in terms of the location of the
threat: Web server, Web browser, and network traffic between browser and server.
Issues of server and browser security fall into the category of computer system secu-
rity; Part Six of this book addresses the issue of system security in general but is also
applicable to Web system security. Issues of traffic security fall into the category of
network security and are addressed in this chapter.

Web Traffic Security Approaches

A number of approaches to providing Web security are possible. The various
approaches that have been considered are similar in the services they provide and,
to some extent, in the mechanisms that they use, but they differ with respect to their
scope of applicability and their relative location within the TCP/IP protocol stack.

Threats Consequences Countermeasures

Integrity •	 Modification of user data
•	 Trojan horse browser
•	 Modification of memory
•	 Modification of message

traffic in transit

•	 Loss of information
•	 Compromise of machine
•	 Vulnerability to all other

threats

Cryptographic
checksums

Confidentiality •	 Eavesdropping on the net
•	 Theft of info from server
•	 Theft of data from client
•	 Info about network

configuration
•	 Info about which client talks

to server

•	 Loss of information
•	 Loss of privacy

Encryption, Web
proxies

Denial of
Service

•	 Killing of user threads
•	 Flooding machine with bogus

requests
•	 Filling up disk or memory
•	 Isolating machine by DNS

attacks

•	 Disruptive
•	 Annoying
•	 Prevent user from getting work

done

Difficult to prevent

Authentication •	 Impersonation of legitimate
users

•	 Data forgery

•	 Misrepresentation of user
•	 Belief that false information

is valid

Cryptographic
techniques

Table 6.1  A Comparison of Threats on the Web

M06_STAL4855_06_GE_C06.indd 189 8/9/16 9:10 PM

190   chapter 6 / Transport-Level Security

Figure 6.1 illustrates this difference. One way to provide Web security is
to use IP security (IPsec) (Figure 6.1a). The advantage of using IPsec is that it is
transparent to end users and applications and provides a general-purpose solution.
Furthermore, IPsec includes a filtering capability so that only selected traffic need
incur the overhead of IPsec processing.

Another relatively general-purpose solution is to implement security just
above TCP (Figure 6.1b). The foremost example of this approach is the Secure
Sockets Layer (SSL) and the follow-on Internet standard known as Transport
Layer Security (TLS). At this level, there are two implementation choices. For full
generality, SSL (or TLS) could be provided as part of the underlying protocol suite
and therefore be transparent to applications. Alternatively, TLS can be embedded
in specific packages. For example, virtually all browsers come equipped with TLS,
and most Web servers have implemented the protocol.

Application-specific security services are embedded within the particular
application. Figure 6.1c shows examples of this architecture. The advantage of this
approach is that the service can be tailored to the specific needs of a given application.

	 6.2	T ransport Layer Security

One of the most widely used security services is Transport Layer Security (TSL);
the current version is Version 1.2, defined in RFC 5246. TLS is an Internet stan-
dard that evolved from a commercial protocol known as Secure Sockets Layer
(SSL). Although SSL implementations are still around, it has been deprecated by
IETF and is disabled by most corporations offering TLS software. TLS is a general-
purpose service implemented as a set of protocols that rely on TCP. At this level,
there are two implementation choices. For full generality, TLS could be provided
as part of the underlying protocol suite and therefore be transparent to applica-
tions. Alternatively, TLS can be embedded in specific packages. For example, most
browsers come equipped with TLS, and most Web servers have implemented the
protocol.

TLS Architecture

TLS is designed to make use of TCP to provide a reliable end-to-end secure ser-
vice. TLS is not a single protocol but rather two layers of protocols, as illustrated in
Figure 6.2.

Figure 6.1  Relative Location of Security Facilities in the TCP/IP Protocol Stack

SMTPHTTP

TCP

IP/IPSec

(a) Network level

FTP

SMTPHTTP

TCP

SSL or TLS

IP

(b) Transport level

FTP

IP

S/MIME

HTTPKerberos

UDP

SMTP

(c) Application level

TCP

M06_STAL4855_06_GE_C06.indd 190 8/9/16 9:10 PM

6.2 / Transport Layer Security  191

The TLS Record Protocol provides basic security services to various higher-
layer protocols. In particular, the Hypertext Transfer Protocol (HTTP), which
provides the transfer service for Web client/server interaction, can operate on top
of TLS. Three higher-layer protocols are defined as part of TLS: the Handshake
Protocol; the Change Cipher Spec Protocol; and the Alert Protocol. These TLS-
specific protocols are used in the management of TLS exchanges and are examined
later in this section. A fourth protocol, the Heartbeat Protocol, is defined in a sepa-
rate RFC and is also discussed subsequently in this section.

Two important TLS concepts are the TLS session and the TLS connection,
which are defined in the specification as follows:

■■ Connection: A connection is a transport (in the OSI layering model definition)
that provides a suitable type of service. For TLS, such connections are peer-to-
peer relationships. The connections are transient. Every connection is associ-
ated with one session.

■■ Session: A TLS session is an association between a client and a server. Sessions
are created by the Handshake Protocol. Sessions define a set of cryptographic
security parameters, which can be shared among multiple connections. Sessions
are used to avoid the expensive negotiation of new security parameters for
each connection.

Between any pair of parties (applications such as HTTP on client and server),
there may be multiple secure connections. In theory, there may also be multiple
simultaneous sessions between parties, but this feature is not used in practice.

There are a number of states associated with each session. Once a session is
established, there is a current operating state for both read and write (i.e., receive
and send). In addition, during the Handshake Protocol, pending read and write
states are created. Upon successful conclusion of the Handshake Protocol, the
pending states become the current states.

A session state is defined by the following parameters:

■■ Session identifier: An arbitrary byte sequence chosen by the server to identify
an active or resumable session state.

■■ Peer certificate: An X509.v3 certificate of the peer. This element of the state
may be null.

Figure 6.2  TLS Protocol Stack

IP

TCP

Record protocol

Handshake
protocol

Change
cipher spec

protocol

Alert
protocol HTTP Heartbeat

protocol

M06_STAL4855_06_GE_C06.indd 191 8/9/16 9:10 PM

192   chapter 6 / Transport-Level Security

■■ Compression method: The algorithm used to compress data prior to encryption.

■■ Cipher spec: Specifies the bulk data encryption algorithm (such as null, AES,
etc.) and a hash algorithm (such as MD5 or SHA-1) used for MAC calculation.
It also defines cryptographic attributes such as the hash_size.

■■ Master secret: 48-byte secret shared between the client and server.

■■ Is resumable: A flag indicating whether the session can be used to initiate new
connections.

A connection state is defined by the following parameters:

■■ Server and client random: Byte sequences that are chosen by the server and
client for each connection.

■■ Server write MAC secret: The secret key used in MAC operations on data sent
by the server.

■■ Client write MAC secret: The symmetric key used in MAC operations on data
sent by the client.

■■ Server write key: The symmetric encryption key for data encrypted by the
server and decrypted by the client.

■■ Client write key: The symmetric encryption key for data encrypted by the
client and decrypted by the server.

■■ Initialization vectors: When a block cipher in CBC mode is used, an initial-
ization vector (IV) is maintained for each key. This field is first initialized by
the TLS Handshake Protocol. Thereafter, the final ciphertext block from each
record is preserved for use as the IV with the following record.

■■ Sequence numbers: Each party maintains separate sequence numbers for
transmitted and received messages for each connection. When a party sends or
receives a “change cipher spec message,” the appropriate sequence number is
set to zero. Sequence numbers may not exceed 264 - 1.

TLS Record Protocol

The TLS Record Protocol provides two services for TLS connections:

■■ Confidentiality: The Handshake Protocol defines a shared secret key that is
used for conventional encryption of TLS payloads.

■■ Message Integrity: The Handshake Protocol also defines a shared secret key
that is used to form a message authentication code (MAC).

Figure 6.3 indicates the overall operation of the TLS Record Protocol. The
Record Protocol takes an application message to be transmitted, fragments the data
into manageable blocks, optionally compresses the data, applies a MAC, encrypts,
adds a header, and transmits the resulting unit in a TCP segment. Received data
are decrypted, verified, decompressed, and reassembled before being delivered to
higher-level users.

The first step is fragmentation. Each upper-layer message is fragmented into
blocks of 214 bytes (16,384 bytes) or less. Next, compression is optionally applied.
Compression must be lossless and may not increase the content length by more than

M06_STAL4855_06_GE_C06.indd 192 8/9/16 9:10 PM

6.2 / Transport Layer Security  193

1024 bytes.1 In TLSv2, no compression algorithm is specified, so the default com-
pression algorithm is null.

The next step in processing is to compute a message authentication code over
the compressed data. TLS makes use of the HMAC algorithm defined in RFC 2104.
Recall from Chapter 3 that HMAC is defined as

	 HMACK(M) = H[(K+ ⊕ opad) ‘ H[(K+ ⊕ ipad) ‘ M]]	

where

H = embedded hash function (for TLS, either MD5 or SHA-1)

M = message input to HMAC

K+ = secret key padded with zeros on the left so that the result is equal to
the block length of the hash code (for MD5 and SHA-1, block
length = 512 bits)

ipad = 00110110 (36 in hexadecimal) repeated 64 times (512 bits)
opad = 01011100 (5C in hexadecimal) repeated 64 times (512 bits)

For TLS, the MAC calculation encompasses the fields indicated in the
following expression:

HMAC_hash(MAC_write_secret, seq_num ‘ TLSCompressed.type ‘
TLSCompressed.version ‘ TLSCompressed.length ‘ TLSCompressed.fragment)

The MAC calculation covers all of the fields XXX, plus the field
TLSCompressed.version, which is the version of the protocol being employed.

Next, the compressed message plus the MAC are encrypted using symmetric
encryption. Encryption may not increase the content length by more than 1024 bytes,

1Of course, one hopes that compression shrinks rather than expands the data. However, for very short
blocks, it is possible, because of formatting conventions, that the compression algorithm will actually pro-
vide output that is longer than the input.

Figure 6.3  TLS Record Protocol Operation

Application data

Fragment

Compress

Add MAC

Encrypt

Append TLS
record header

M06_STAL4855_06_GE_C06.indd 193 8/9/16 9:10 PM

194   chapter 6 / Transport-Level Security

so that the total length may not exceed 214 + 2048. The following encryption algo-
rithms are permitted:

Block Cipher Stream Cipher

Algorithm Key Size Algorithm Key Size

AES
3DES

128, 256
168

RC4-128 128

For stream encryption, the compressed message plus the MAC are encrypted.
Note that the MAC is computed before encryption takes place and that the MAC is
then encrypted along with the plaintext or compressed plaintext.

For block encryption, padding may be added after the MAC prior to encryp-
tion. The padding is in the form of a number of padding bytes followed by a one-
byte indication of the length of the padding. The padding can be any amount that
results in a total that is a multiple of the cipher’s block length, up to a maximum
of 255 bytes. For example, if the cipher block length is 16 bytes (e.g., AES) and if
the plaintext (or compressed text if compression is used) plus MAC plus padding
length byte is 79 bytes long, then the padding length (in bytes) can be 1, 17, 33, and
so on, up to 161. At a padding length of 161, the total length is 79 + 161 = 240. A
variable padding length may be used to frustrate attacks based on an analysis of
the lengths of exchanged messages.

The final step of TLS Record Protocol processing is to prepend a header con-
sisting of the following fields:

■■ Content Type (8 bits): The higher-layer protocol used to process the enclosed
fragment.

■■ Major Version (8 bits): Indicates major version of TLS in use. For TLSv2, the
value is 3.

■■ Minor Version (8 bits): Indicates minor version in use. For TLSv2, the value is 1.

■■ Compressed Length (16 bits): The length in bytes of the plaintext fragment
(or compressed fragment if compression is used). The maximum value is
214 + 2048.

The content types that have been defined are change_cipher_spec,
alert, handshake, and application_data. The first three are the TLS-
specific protocols, discussed next. Note that no distinction is made among the vari-
ous applications (e.g., HTTP) that might use TLS; the content of the data created by
such applications is opaque to TLS.

Figure 6.4 illustrates the TLS record format.

Change Cipher Spec Protocol

The Change Cipher Spec Protocol is one of the four TLS-specific protocols that use
the TLS Record Protocol, and it is the simplest. This protocol consists of a single
message (Figure 6.5a), which consists of a single byte with the value 1. The sole pur-
pose of this message is to cause the pending state to be copied into the current state,
which updates the cipher suite to be used on this connection.

M06_STAL4855_06_GE_C06.indd 194 8/9/16 9:10 PM

6.2 / Transport Layer Security  195

Alert Protocol

The Alert Protocol is used to convey TLS-related alerts to the peer entity. As with
other applications that use TLS, alert messages are compressed and encrypted, as
specified by the current state.

Each message in this protocol consists of two bytes (Figure 6.5b). The first
byte takes the value warning (1) or fatal (2) to convey the severity of the message.
If the level is fatal, TLS immediately terminates the connection. Other connections
on the same session may continue, but no new connections on this session may
be established. The second byte contains a code that indicates the specific alert.
The following alerts are always fatal:

■■ unexpected_message: An inappropriate message was received.

■■ bad_record_mac: An incorrect MAC was received.

■■ decompression_failure: The decompression function received improper input
(e.g., unable to decompress or decompress to greater than maximum allowable
length).

■■ handshake_failure: Sender was unable to negotiate an acceptable set of secu-
rity parameters given the options available.

■■ illegal_parameter: A field in a handshake message was out of range or incon-
sistent with other fields.

Figure 6.5  TLS Record Protocol Payload

1

(a) Change cipher spec protocol

1 byte

Type

(c) Handshake protocol

1 byte

Length

3 bytes

Content

Ú 0 bytes

(d) Other upper-layer protocol (e.g., HTTP)

Opaque content

Ú 1 byte

Level

(b) Alert protocol

1 byte 1 byte

Alert

Figure 6.4  TLS Record Format

Content
type

Major
version

Minor
version

Compressed
length

Plaintext
(optionally

compressed)

MAC (0, 16, or 20 bytes)

E
nc

ry
pt

ed

M06_STAL4855_06_GE_C06.indd 195 8/9/16 9:10 PM

196   chapter 6 / Transport-Level Security

■■ decryption_failed: A ciphertext decrypted in an invalid way; either it was not
an even multiple of the block length or its padding values, when checked, were
incorrect.

■■ record_overflow: A TLS record was received with a payload (ciphertext)
whose length exceeds 214 + 2048 bytes, or the ciphertext decrypted to a length
of greater than 214 + 1024 bytes.

■■ unknown_ca: A valid certificate chain or partial chain was received, but the
certificate was not accepted because the CA certificate could not be located or
could not be matched with a known, trusted CA.

■■ access_denied: A valid certificate was received, but when access control was
applied, the sender decided not to proceed with the negotiation.

■■ decode_error: A message could not be decoded, because either a field was out
of its specified range or the length of the message was incorrect.

■■ export_restriction: A negotiation not in compliance with export restrictions on
key length was detected.

■■ protocol_version: The protocol version the client attempted to negotiate is
recognized but not supported.

■■ insufficient_security: Returned instead of handshake_failure when a negotia-
tion has failed specifically because the server requires ciphers more secure
than those supported by the client.

■■ internal_error: An internal error unrelated to the peer or the correctness of
the protocol makes it impossible to continue.

The remaining alerts are the following.

■■ close_notify: Notifies the recipient that the sender will not send any more mes-
sages on this connection. Each party is required to send a close_notify alert
before closing the write side of a connection.

■■ bad_certificate: A received certificate was corrupt (e.g., contained a signature
that did not verify).

■■ unsupported_certificate: The type of the received certificate is not supported.

■■ certificate_revoked: A certificate has been revoked by its signer.

■■ certificate_expired: A certificate has expired.

■■ certificate_unknown: Some other unspecified issue arose in processing the
certificate, rendering it unacceptable.

■■ decrypt_error: A handshake cryptographic operation failed, including being
unable to verify a signature, decrypt a key exchange, or validate a finished
message.

■■ user_canceled: This handshake is being canceled for some reason unrelated to
a protocol failure.

■■ no_renegotiation: Sent by a client in response to a hello request or by the
server in response to a client hello after initial handshaking. Either of these
messages would normally result in renegotiation, but this alert indicates that
the sender is not able to renegotiate. This message is always a warning.

M06_STAL4855_06_GE_C06.indd 196 8/9/16 9:10 PM

6.2 / Transport Layer Security  197

Handshake Protocol

The most complex part of TLS is the Handshake Protocol. This protocol allows
the server and client to authenticate each other and to negotiate an encryption and
MAC algorithm and cryptographic keys to be used to protect data sent in a TLS
record. The Handshake Protocol is used before any application data is transmitted.

The Handshake Protocol consists of a series of messages exchanged by client
and server. All of these have the format shown in Figure 6.5c. Each message has
three fields:

■■ Type (1 byte): Indicates one of 10 messages. Table 6.2 lists the defined message
types.

■■ Length (3 bytes): The length of the message in bytes.

■■ Content (# 0 bytes): The parameters associated with this message; these are
listed in Table 6.2.

Figure 6.6 shows the initial exchange needed to establish a logical connection
between client and server. The exchange can be viewed as having four phases.

Phase 1. Establish Security Capabilities  Phase 1 initiates a logical connection
and establishes the security capabilities that will be associated with it. The exchange
is initiated by the client, which sends a client_hello message with the following
parameters:

■■ Version: The highest TLS version understood by the client.

■■ Random: A client-generated random structure consisting of a 32-bit timestamp
and 28 bytes generated by a secure random number generator. These values
serve as nonces and are used during key exchange to prevent replay attacks.

■■ Session ID: A variable-length session identifier. A nonzero value indicates that
the client wishes to update the parameters of an existing connection or to cre-
ate a new connection on this session. A zero value indicates that the client
wishes to establish a new connection on a new session.

Message Type Parameters

hello_request null

client_hello version, random, session id, cipher suite, compression method

server_hello version, random, session id, cipher suite, compression method

certificate chain of X.509v3 certificates

server_key_exchange parameters, signature

certificate_request type, authorities

server_done null

certificate_verify signature

client_key_exchange parameters, signature

finished hash value

Table 6.2  TLS Handshake Protocol Message Types

M06_STAL4855_06_GE_C06.indd 197 8/9/16 9:10 PM

198   chapter 6 / Transport-Level Security

■■ CipherSuite: This is a list that contains the combinations of cryptographic
algorithms supported by the client, in decreasing order of preference. Each
element of the list (each cipher suite) defines both a key exchange algorithm
and a CipherSpec; these are discussed subsequently.

■■ Compression Method: This is a list of the compression methods the client
supports.

After sending the client_hello message, the client waits for the server_
hello message, which contains the same parameters as the client_hello

Figure 6.6  Handshake Protocol Action

Client Server

Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certi�cate, key exchange,
and request certi�cate. Server signals end
of hello message phase.

Phase 3
Client sends certi�cate if requested. Client
sends key exchange. Client may send
certi�cate veri�cation.

Phase 4
Change cipher suite and �nish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

�nished

change_cipher_spec

�nished

change_cipher_spec

certi�cate_verify

client_key_exchange

certi�cate

server_hello_done
certi�cate_request

server_key_exchange

certi�cate

server_hello

client_hello
T

im
e

M06_STAL4855_06_GE_C06.indd 198 8/9/16 9:10 PM

6.2 / Transport Layer Security  199

message. For the server_hello message, the following conventions apply. The
Version field contains the lowest of the version suggested by the client and the highest
supported by the server. The Random field is generated by the server and is indepen-
dent of the client’s Random field. If the SessionID field of the client was nonzero, the
same value is used by the server; otherwise the server’s SessionID field contains the
value for a new session. The CipherSuite field contains the single cipher suite selected
by the server from those proposed by the client. The Compression field contains the
compression method selected by the server from those proposed by the client.

The first element of the Ciphersuite parameter is the key exchange method
(i.e., the means by which the cryptographic keys for conventional encryption and
MAC are exchanged). The following key exchange methods are supported.

■■ RSA: The secret key is encrypted with the receiver’s RSA public key. A public-
key certificate for the receiver’s key must be made available.

■■ Fixed Diffie–Hellman: This is a Diffie–Hellman key exchange in which the
server’s certificate contains the Diffie–Hellman public parameters signed
by the certificate authority (CA). That is, the public-key certificate contains
the Diffie–Hellman public-key parameters. The client provides its Diffie–
Hellman public-key parameters either in a certificate, if client authentication
is required, or in a key exchange message. This method results in a fixed secret
key between two peers based on the Diffie–Hellman calculation using the
fixed public keys.

■■ Ephemeral Diffie–Hellman: This technique is used to create ephemeral (tem-
porary, one-time) secret keys. In this case, the Diffie–Hellman public keys are
exchanged and signed using the sender’s private RSA or DSS key. The receiver
can use the corresponding public key to verify the signature. Certificates are used
to authenticate the public keys. This would appear to be the most secure of the
three Diffie–Hellman options because it results in a temporary, authenticated key.

■■ Anonymous Diffie–Hellman: The base Diffie–Hellman algorithm is used
with no authentication. That is, each side sends its public Diffie–Hellman
parameters to the other with no authentication. This approach is vulnerable to
man-in-the-middle attacks, in which the attacker conducts anonymous Diffie–
Hellman with both parties.

Following the definition of a key exchange method is the CipherSpec, which
includes the following fields:

■■ CipherAlgorithm: Any of the algorithms mentioned earlier: RC4, RC2, DES,
3DES, DES40, or IDEA

■■ MACAlgorithm: MD5 or SHA-1

■■ CipherType: Stream or Block

■■ IsExportable: True or False

■■ HashSize: 0, 16 (for MD5), or 20 (for SHA-1) bytes

■■ Key Material: A sequence of bytes that contain data used in generating the
write keys

■■ IV Size: The size of the Initialization Value for Cipher Block Chaining (CBC)
encryption

M06_STAL4855_06_GE_C06.indd 199 8/9/16 9:10 PM

200   chapter 6 / Transport-Level Security

Phase 2. Server Authentication and Key Exchange  The server begins this
phase by sending its certificate if it needs to be authenticated; the message con-
tains one or a chain of X.509 certificates. The certificate message is required for
any agreed-on key exchange method except anonymous Diffie–Hellman. Note
that if fixed Diffie–Hellman is used, this certificate message functions as the serv-
er’s key exchange message because it contains the server’s public Diffie–Hellman
parameters.

Next, a server_key_exchange message may be sent if it is required. It is not
required in two instances: (1) The server has sent a certificate with fixed Diffie–
Hellman parameters; or (2) RSA key exchange is to be used. The server_key_
exchange message is needed for the following:

■■ Anonymous Diffie–Hellman: The message content consists of the two global
Diffie–Hellman values (a prime number and a primitive root of that number)
plus the server’s public Diffie–Hellman key (see Figure 10.1).

■■ Ephemeral Diffie–Hellman: The message content includes the three Diffie–
Hellman parameters provided for anonymous Diffie–Hellman plus a signature
of those parameters.

■■ RSA key exchange (in which the server is using RSA but has a signature-only
RSA key): Accordingly, the client cannot simply send a secret key encrypted
with the server’s public key. Instead, the server must create a temporary RSA
public/private key pair and use the server_key_exchange message to send the
public key. The message content includes the two parameters of the temporary
RSA public key (exponent and modulus; see Figure 9.5) plus a signature of
those parameters.

Some further details about the signatures are warranted. As usual, a signature
is created by taking the hash of a message and encrypting it with the sender’s private
key. In this case, the hash is defined as

	 hash(ClientHello.random ‘ ServerHello.random ‘ ServerParams)	

So the hash covers not only the Diffie–Hellman or RSA parameters but also the
two nonces from the initial hello messages. This ensures against replay attacks and
misrepresentation. In the case of a DSS signature, the hash is performed using the
SHA-1 algorithm. In the case of an RSA signature, both an MD5 and an SHA-1
hash are calculated, and the concatenation of the two hashes (36 bytes) is encrypted
with the server’s private key.

Next, a nonanonymous server (server not using anonymous Diffie–Hellman)
can request a certificate from the client. The certificate_request message includes
two parameters: certificate_type and certificate_authorities. The certificate type
indicates the public-key algorithm and its use:

■■ RSA, signature only

■■ DSS, signature only

■■ RSA for fixed Diffie–Hellman; in this case the signature is used only for
authentication, by sending a certificate signed with RSA

■■ DSS for fixed Diffie–Hellman; again, used only for authentication

M06_STAL4855_06_GE_C06.indd 200 8/9/16 9:10 PM

6.2 / Transport Layer Security  201

The second parameter in the certificate_request message is a list of the distin-
guished names of acceptable certificate authorities.

The final message in phase 2, and one that is always required, is the server_
done message, which is sent by the server to indicate the end of the server hello and
associated messages. After sending this message, the server will wait for a client
response. This message has no parameters.

Phase 3. Client Authentication and Key Exchange  Upon receipt of the
server_done message, the client should verify that the server provided a valid
certificate (if required) and check that the server_hello parameters are accept-
able. If all is satisfactory, the client sends one or more messages back to the server.

If the server has requested a certificate, the client begins this phase by send-
ing a certificate message. If no suitable certificate is available, the client sends a
no_certificate alert instead.

Next is the client_key_exchange message, which must be sent in this phase.
The content of the message depends on the type of key exchange, as follows:

■■ RSA: The client generates a 48-byte pre-master secret and encrypts with the
public key from the server’s certificate or temporary RSA key from a server_
key_exchange message. Its use to compute a master secret is explained later.

■■ Ephemeral or Anonymous Diffie–Hellman: The client’s public Diffie–Hellman
parameters are sent.

■■ Fixed Diffie–Hellman: The client’s public Diffie–Hellman parameters were
sent in a certificate message, so the content of this message is null.

Finally, in this phase, the client may send a certificate_verify message to pro-
vide explicit verification of a client certificate. This message is only sent following
any client certificate that has signing capability (i.e., all certificates except those
containing fixed Diffie–Hellman parameters). This message signs a hash code based
on the preceding messages, defined as

CertificateVerify.signature.md5_hash

  MD5(handshake_messages);

Certificate.signature.sha_hash
  SHA(handshake_messages);

where handshake_messages refers to all Handshake Protocol messages sent or
received starting at client_hello but not including this message. If the user’s
private key is DSS, then it is used to encrypt the SHA-1 hash. If the user’s private
key is RSA, it is used to encrypt the concatenation of the MD5 and SHA-1 hashes.
In either case, the purpose is to verify the client’s ownership of the private key for
the client certificate. Even if someone is misusing the client’s certificate, he or she
would be unable to send this message.

Phase 4. Finish  Phase 4 completes the setting up of a secure connection. The client
sends a change_cipher_spec message and copies the pending CipherSpec into the
current CipherSpec. Note that this message is not considered part of the Handshake
Protocol but is sent using the Change Cipher Spec Protocol. The client then imme-
diately sends the finished message under the new algorithms, keys, and secrets.

M06_STAL4855_06_GE_C06.indd 201 8/9/16 9:10 PM

202   chapter 6 / Transport-Level Security

The finished message verifies that the key exchange and authentication processes
were successful. The content of the finished message is:

PRF(master_secret, finished_label, MD5(handshake_messages) ‘ SHA@1
(handshake_messages))

where finished_label is the string “client finished” for the client and “server
finished” for the server.

In response to these two messages, the server sends its own change_cipher_
spec message, transfers the pending to the current CipherSpec, and sends its fin-
ished message. At this point, the handshake is complete and the client and server
may begin to exchange application-layer data.

Cryptographic Computations

Two further items are of interest: (1) the creation of a shared master secret by
means of the key exchange; and (2) the generation of cryptographic parameters
from the master secret.

Master Secret Creation  The shared master secret is a one-time 48-byte value
(384 bits) generated for this session by means of secure key exchange. The creation
is in two stages. First, a pre_master_secret is exchanged. Second, the master_
secret is calculated by both parties. For pre_master_secret exchange, there
are two possibilities.

■■ RSA: A 48-byte pre_master_secret is generated by the client, encrypted with
the server’s public RSA key, and sent to the server. The server decrypts the
ciphertext using its private key to recover the pre_master_secret.

■■ Diffie–Hellman: Both client and server generate a Diffie–Hellman public key.
After these are exchanged, each side performs the Diffie–Hellman calculation
to create the shared pre_master_secret.

Both sides now compute the master_secret as

master_secret =
  PRF(pre_master_secret, “master secret”, ClientHello.random ‘ ServerHello
.random)

where ClientHello.random and ServerHello.random are the two nonce
values exchanged in the initial hello messages.

The algorithm is performed until 48 bytes of pseudorandom output are pro-
duced. The calculation of the key block material (MAC secret keys, session encryp-
tion keys, and IVs) is defined as

key_block =
  PRF(SecurityParameters.master_secret, “key expansion”,
SecurityParameters.server_random ‘ SecurityParameters.client_random)

until enough output has been generated.

M06_STAL4855_06_GE_C06.indd 202 8/9/16 9:10 PM

6.2 / Transport Layer Security  203

Generation of Cryptographic Parameters  CipherSpecs require a client write
MAC secret, a server write MAC secret, a client write key, a server write key, a
client write IV, and a server write IV, which are generated from the master secret
in that order. These parameters are generated from the master secret by hashing
the master secret into a sequence of secure bytes of sufficient length for all needed
parameters.

The generation of the key material from the master secret uses the same for-
mat for generation of the master secret from the pre-master secret as

key_block = MD5(master_secret ‘ SHA(=A> ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘

MD5(master_secret ‘ SHA(=BB> ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘

MD5(master_secret ‘ SHA(=CCC> ‘ master_secret ‘
ServerHello.random ‘ ClientHello.random)) ‘ c

until enough output has been generated. The result of this algorithmic structure is a
pseudorandom function. We can view the master_secret as the pseudorandom
seed value to the function. The client and server random numbers can be viewed as
salt values to complicate cryptanalysis (see Chapter 11 for a discussion of the use of
salt values).

Pseudorandom Function  TLS makes use of a pseudorandom function referred
to as PRF to expand secrets into blocks of data for purposes of key generation or
validation. The objective is to make use of a relatively small, shared secret value but
to generate longer blocks of data in a way that is secure from the kinds of attacks
made on hash functions and MACs. The PRF is based on the data expansion func-
tion (Figure 6.7) given as

	
P_hash(secret, seed) = HMAC_hash(secret, A(1) ‘ seed) ‘
 HMAC_hash(secret, A(2) ‘ seed) ‘
 HMAC_hash(secret, A(3) ‘ seed) ‘

	

where A() is defined as

A(0) = seed
A(i) = HMAC_hash(secret, A(i - 1))

The data expansion function makes use of the HMAC algorithm with either MD5
or SHA-1 as the underlying hash function. As can be seen, P_hash can be iterated
as many times as necessary to produce the required quantity of data. For example, if
P_SHA256 was used to generate 80 bytes of data, it would have to be iterated three
times (through A(3)), producing 96 bytes of data of which the last 16 would be dis-
carded. In this case, P_MD5 would have to be iterated four times, producing exactly
64 bytes of data. Note that each iteration involves two executions of HMAC, each
of which in turn involves two executions of the underlying hash algorithm.

M06_STAL4855_06_GE_C06.indd 203 8/9/16 9:10 PM

204   chapter 6 / Transport-Level Security

To make PRF as secure as possible, it uses two hash algorithms in a way that
should guarantee its security if either algorithm remains secure. PRF is defined as

	 PRF(secret, label, seed) = P_6hash7(secret, label ‘ seed)	

PRF takes as input a secret value, an identifying label, and a seed value and
produces an output of arbitrary length.

Heartbeat Protocol

In the context of computer networks, a heartbeat is a periodic signal generated by
hardware or software to indicate normal operation or to synchronize other parts of
a system. A heartbeat protocol is typically used to monitor the availability of a pro-
tocol entity. In the specific case of TLS, a Heartbeat protocol was defined in 2012 in
RFC 6250 (Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension).

Figure 6.7  TLS Function P_hash(secret, seed)

Secret

Seed

Seed

A(1)
HMAC

Secret

Secret

Length = hash size

Secret

Seed

A(2)
HMAC

HMAC Secret

Seed

A(3)
HMAC

HMAC

Secret HMAC

M06_STAL4855_06_GE_C06.indd 204 8/9/16 9:10 PM

6.2 / Transport Layer Security  205

The Heartbeat protocol runs on top of the TLS Record Protocol and con-
sists of two message types: heartbeat_request and heartbeat_response.
The use of the Heartbeat protocol is established during Phase 1 of the Handshake
protocol (Figure 6.6). Each peer indicates whether it supports heartbeats. If heart-
beats are supported, the peer indicates whether it is willing to receive heartbeat_
request messages and respond with heartbeat_response messages or only
willing to send heartbeat_request messages.

A heartbeat_request message can be sent at any time. Whenever a re-
quest message is received, it should be answered promptly with a corresponding
heartbeat_response message. The heartbeat_request message includes
payload length, payload, and padding fields. The payload is a random content
between 16 bytes and 64 Kbytes in length. The corresponding heartbeat_
response message must include an exact copy of the received payload. The pad-
ding is also random content. The padding enables the sender to perform a path
MTU (maximum transfer unit) discovery operation, by sending requests with in-
creasing padding until there is no answer anymore, because one of the hosts on
the path cannot handle the message.

The heartbeat serves two purposes. First, it assures the sender that the recipi-
ent is still alive, even though there may not have been any activity over the under-
lying TCP connection for a while. Second, the heartbeat generates activity across
the connection during idle periods, which avoids closure by a firewall that does not
tolerate idle connections.

The requirement for the exchange of a payload was designed into the Heartbeat
protocol to support its use in a connectionless version of TLS known as Datagram
Transport Layer Security (DTLS). Because a connectionless service is subject
to packet loss, the payload enables the requestor to match response messages to
request messages. For simplicity, the same version of the Heartbeat protocol is used
with both TLS and DTLS. Thus, the payload is required for both TLS and DTLS.

SSL/TLS ATTACKS

Since the first introduction of SSL in 1994, and the subsequent standardization of
TLS, numerous attacks have been devised against these protocols. The appearance
of each attack has necessitated changes in the protocol, the encryption tools used, or
some aspect of the implementation of SSL and TLS to counter these threats.

Attack Categories  We can group the attacks into four general categories:

■■ Attacks on the handshake protocol: As early as 1998, an approach to com-
promising the handshake protocol based on exploiting the formatting and
implementation of the RSA encryption scheme was presented [BLEI98]. As
countermeasures were implemented the attack was refined and adjusted to not
only thwart the countermeasures but also speed up the attack [e.g., BARD12].

■■ Attacks on the record and application data protocols: A number of vulnerabili-
ties have been discovered in these protocols, leading to patches to counter the
new threats. As a recent example, in 2011, researchers Thai Duong and Juliano
Rizzo demonstrated a proof of concept called BEAST (Browser Exploit Against
SSL/TLS) that turned what had been considered only a theoretical vulnerability

M06_STAL4855_06_GE_C06.indd 205 8/9/16 9:10 PM

206   chapter 6 / Transport-Level Security

into a practical attack [GOOD11]. BEAST leverages a type of cryptographic
attack called a chosen-plaintext attack. The attacker mounts the attack by
choosing a guess for the plaintext that is associated with a known ciphertext. The
researchers developed a practical algorithm for launching successful attacks.
Subsequent patches were able to thwart this attack. The authors of the BEAST
attack are also the creators of the 2012 CRIME (Compression Ratio Info-leak
Made Easy) attack, which can allow an attacker to recover the content of web
cookies when data compression is used along with TLS [GOOD12]. When used
to recover the content of secret authentication cookies, it allows an attacker to
perform session hijacking on an authenticated web session.

■■ Attacks on the PKI: Checking the validity of X.509 certificates is an activity
subject to a variety of attacks, both in the context of SSL/TLS and elsewhere.
For example, [GEOR12] demonstrated that commonly used libraries for
SSL/TLS suffer from vulnerable certificate validation implementations. The
authors revealed weaknesses in the source code of OpenSSL, GnuTLS, JSSE,
ApacheHttpClient, Weberknecht, cURL, PHP, Python and applications built
upon or with these products.

■■ Other attacks: [MEYE13] lists a number of attacks that do not fit into any of
the preceding categories. One example is an attack announced in 2011 by the
German hacker group The Hackers Choice, which is a DoS attack [KUMA11].
The attack creates a heavy processing load on a server by overwhelming the
target with SSL/TLS handshake requests. Boosting system load is done by
establishing new connections or using renegotiation. Assuming that the major-
ity of computation during a handshake is done by the server, the attack creates
more system load on the server than on the source device, leading to a DoS.
The server is forced to continuously recompute random numbers and keys.

The history of attacks and countermeasures for SSL/TLS is representative of
that for other Internet-based protocols. A “perfect” protocol and a “perfect” imple-
mentation strategy are never achieved. A constant back-and-forth between threats
and countermeasures determines the evolution of Internet-based protocols.

TLSv1.3

In 2014, the IETF TLS working group began work on a version 1.3 of TLS. The
primary aim is to improve the security of TLS. As of this writing, TLSv1.3 is still
in a draft stage, but the final standard is likely to be very close to the current draft.
Among the significant changes from version 1.2 are the following:

■■ TLSv1.3 removes support for a number of options and functions. Remov-
ing code that implements functions no longer needed reduces the chances
of potentially dangerous coding errors and reduces the attack surface. The
deleted items include:

–Compression
–Ciphers that do not offer authenticated encryption
–Static RSA and DH key exchange
–32-bit timestamp as part of the Random parameter in the client_hello

message

M06_STAL4855_06_GE_C06.indd 206 8/9/16 9:10 PM

6.3 / HTTPS  207

–Renegotiation
–Change Cipher Spec Protocol
–RC4
–Use of MD5 and SHA-224 hashes with signatures

■■ TLSv1.3 uses Diffie–Hellman or Elliptic Curve Diffie–Hellman for key
exchange and does not permit RSA. The danger with RSA is that if the private
key is compromised, all handshakes using these cipher suites will be compro-
mised. With DH or ECDH, a new key is negotiated for each handshake.

■■ TLSv1.3 allows for a “1 round trip time” handshake by changing the order of
message sent with establishing a secure connection. The client sends a Client
Key Exchange message containing its cryptographic parameters for key estab-
lishment before a cipher suite has been negotiated. This enables a server
to calculate keys for encryption and authentication before sending its first
response. Reducing the number of packets sent during this handshake phase
speeds up the process and reduces the attack surface.

These changes should improve the efficiency and security of TLS.

	 6.3	 HTTPS

HTTPS (HTTP over SSL) refers to the combination of HTTP and SSL to imple-
ment secure communication between a Web browser and a Web server. The HTTPS
capability is built into all modern Web browsers. Its use depends on the Web server
supporting HTTPS communication. For example, some search engines do not sup-
port HTTPS.

The principal difference seen by a user of a Web browser is that URL (uniform
resource locator) addresses begin with https:// rather than http://. A normal HTTP
connection uses port 80. If HTTPS is specified, port 443 is used, which invokes SSL.

When HTTPS is used, the following elements of the communication are
encrypted:

■■ URL of the requested document

■■ Contents of the document

■■ Contents of browser forms (filled in by browser user)

■■ Cookies sent from browser to server and from server to browser

■■ Contents of HTTP header

HTTPS is documented in RFC 2818, HTTP Over TLS. There is no fundamen-
tal change in using HTTP over either SSL or TLS, and both implementations are
referred to as HTTPS.

Connection Initiation

For HTTPS, the agent acting as the HTTP client also acts as the TLS client. The
client initiates a connection to the server on the appropriate port and then sends
the TLS ClientHello to begin the TLS handshake. When the TLS handshake has

M06_STAL4855_06_GE_C06.indd 207 8/9/16 9:10 PM

https://rather
http://

208   chapter 6 / Transport-Level Security

finished, the client may then initiate the first HTTP request. All HTTP data is to be
sent as TLS application data. Normal HTTP behavior, including retained connec-
tions, should be followed.

There are three levels of awareness of a connection in HTTPS. At the HTTP
level, an HTTP client requests a connection to an HTTP server by sending a con-
nection request to the next lowest layer. Typically, the next lowest layer is TCP,
but it also may be TLS/SSL. At the level of TLS, a session is established between a
TLS client and a TLS server. This session can support one or more connections at
any time. As we have seen, a TLS request to establish a connection begins with the
establishment of a TCP connection between the TCP entity on the client side and
the TCP entity on the server side.

Connection Closure

An HTTP client or server can indicate the closing of a connection by including the
following line in an HTTP record: Connection: close. This indicates that the
connection will be closed after this record is delivered.

The closure of an HTTPS connection requires that TLS close the connec-
tion with the peer TLS entity on the remote side, which will involve closing the
underlying TCP connection. At the TLS level, the proper way to close a connec-
tion is for each side to use the TLS alert protocol to send a close_notify alert.
TLS implementations must initiate an exchange of closure alerts before closing a
connection. A TLS implementation may, after sending a closure alert, close the
connection without waiting for the peer to send its closure alert, generating an
“incomplete close”. Note that an implementation that does this may choose to
reuse the session. This should only be done when the application knows (typically
through detecting HTTP message boundaries) that it has received all the message
data that it cares about.

HTTP clients also must be able to cope with a situation in which the underlying
TCP connection is terminated without a prior close_notify alert and without a
Connection: close indicator. Such a situation could be due to a programming
error on the server or a communication error that causes the TCP connection to drop.
However, the unannounced TCP closure could be evidence of some sort of attack. So
the HTTPS client should issue some sort of security warning when this occurs.

	 6.4	 Secure Shell (SSH)

Secure Shell (SSH) is a protocol for secure network communications designed to
be relatively simple and inexpensive to implement. The initial version, SSH1 was
focused on providing a secure remote logon facility to replace TELNET and other
remote logon schemes that provided no security. SSH also provides a more general
client/server capability and can be used for such network functions as file transfer and
e-mail. A new version, SSH2, fixes a number of security flaws in the original scheme.
SSH2 is documented as a proposed standard in IETF RFCs 4250 through 4256.

SSH client and server applications are widely available for most operating
systems. It has become the method of choice for remote login and X tunneling and

M06_STAL4855_06_GE_C06.indd 208 8/9/16 9:10 PM

6.4 / Secure Shell (SSH)  209

is rapidly becoming one of the most pervasive applications for encryption technol-
ogy outside of embedded systems.

SSH is organized as three protocols that typically run on top of TCP
(Figure 6.8):

■■ Transport Layer Protocol: Provides server authentication, data confidentiality,
and data integrity with forward secrecy (i.e., if a key is compromised during
one session, the knowledge does not affect the security of earlier sessions). The
transport layer may optionally provide compression.

■■ User Authentication Protocol: Authenticates the user to the server.

■■ Connection Protocol: Multiplexes multiple logical communications channels
over a single, underlying SSH connection.

Transport Layer Protocol

Host Keys  Server authentication occurs at the transport layer, based on the server
possessing a public/private key pair. A server may have multiple host keys using
multiple different asymmetric encryption algorithms. Multiple hosts may share
the same host key. In any case, the server host key is used during key exchange to
authenticate the identity of the host. For this to be possible, the client must have a
priori knowledge of the server’s public host key. RFC 4251 dictates two alternative
trust models that can be used:

1.	 The client has a local database that associates each host name (as typed by the
user) with the corresponding public host key. This method requires no centrally
administered infrastructure and no third-party coordination. The downside is that
the database of name-to-key associations may become burdensome to maintain.

Figure 6.8  SSH Protocol Stack

SSH User
Authentication Protocol

SSH Transport Layer Protocol

TCP

IP
Internet protocol provides datagram delivery across
multiple networks.

Transmission control protocol provides reliable, connection-
oriented end-to-end delivery.

Provides server authentication, con�dentiality, and integrity.
It may optionally also provide compression.

Authenticates the client-side
user to the server.

SSH
Connection Protocol

Multiplexes the encrypted
tunnel into several logical
channels.

M06_STAL4855_06_GE_C06.indd 209 8/9/16 9:10 PM

210   chapter 6 / Transport-Level Security

2.	 The host name-to-key association is certified by a trusted certification author-
ity (CA). The client only knows the CA root key and can verify the validity of
all host keys certified by accepted CAs. This alternative eases the maintenance
problem, since ideally, only a single CA key needs to be securely stored on the
client. On the other hand, each host key must be appropriately certified by a
central authority before authorization is possible.

Packet Exchange  Figure 6.9 illustrates the sequence of events in the SSH
Transport Layer Protocol. First, the client establishes a TCP connection to the
server. This is done via the TCP protocol and is not part of the Transport Layer
Protocol. Once the connection is established, the client and server exchange data,
referred to as packets, in the data field of a TCP segment. Each packet is in the
following format (Figure 6.10).

■■ Packet length: Length of the packet in bytes, not including the packet length
and MAC fields.

■■ Padding length: Length of the random padding field.

■■ Payload: Useful contents of the packet. Prior to algorithm negotiation, this
field is uncompressed. If compression is negotiated, then in subsequent
packets, this field is compressed.

Figure 6.9  SSH Transport Layer Protocol Packet Exchanges

Client Server

SSH-protoversion-softwareversion
Identi�cation string

exchange

Algorithm
negotiation

End of
key exchange

Service
request

SSH-protoversion-softwareversion

SSH_MSG_KEXINIT

SSH_MSG_KEXINIT

SSH_MSG_NEWKEYS

SSH_MSG_NEWKEYS

SSH_MSG_SERVICE_REQUEST

Establish TCP Connection

Key Exchange

M06_STAL4855_06_GE_C06.indd 210 8/9/16 9:10 PM

6.4 / Secure Shell (SSH)  211

■■ Random padding: Once an encryption algorithm has been negotiated, this
field is added. It contains random bytes of padding so that the total length of
the packet (excluding the MAC field) is a multiple of the cipher block size, or
8 bytes for a stream cipher.

■■ Message authentication code (MAC): If message authentication has been
negotiated, this field contains the MAC value. The MAC value is computed
over the entire packet plus a sequence number, excluding the MAC field. The
sequence number is an implicit 32-bit packet sequence that is initialized to
zero for the first packet and incremented for every packet. The sequence num-
ber is not included in the packet sent over the TCP connection.

Once an encryption algorithm has been negotiated, the entire packet
(excluding the MAC field) is encrypted after the MAC value is calculated.

The SSH Transport Layer packet exchange consists of a sequence of steps
(Figure 6.9). The first step, the identification string exchange, begins with the client
sending a packet with an identification string of the form:

SSH-protoversion-softwareversion SP comments CR LF

Figure 6.10  SSH Transport Layer Protocol Packet Formation

pdlpktl

pktl = packet length
pdl = padding length

gniddaP# qes

Payload

SSH Packet

Compressed payload

Ciphertext

COMPRESS

ENCRYPT MAC

M06_STAL4855_06_GE_C06.indd 211 8/9/16 9:10 PM

212   chapter 6 / Transport-Level Security

where SP, CR, and LF are space character, carriage return, and line feed, respec-
tively. An example of a valid string is SSH-2.0-billsSSH_3.6.3q3<CR><LF>.
The server responds with its own identification string. These strings are used in the
Diffie–Hellman key exchange.

Next comes algorithm negotiation. Each side sends an SSH_MSG_KEXINIT
containing lists of supported algorithms in the order of preference to the sender.
There is one list for each type of cryptographic algorithm. The algorithms include
key exchange, encryption, MAC algorithm, and compression algorithm. Table 6.3
shows the allowable options for encryption, MAC, and compression. For each cat-
egory, the algorithm chosen is the first algorithm on the client’s list that is also sup-
ported by the server.

The next step is key exchange. The specification allows for alternative meth-
ods of key exchange, but at present, only two versions of Diffie–Hellman key
exchange are specified. Both versions are defined in RFC 2409 and require only one
packet in each direction. The following steps are involved in the exchange. In this,
C is the client; S is the server; p is a large safe prime; g is a generator for a subgroup
of GF(p); q is the order of the subgroup; V_S is S’s identification string; V_C is

Table 6.3  SSH Transport Layer Cryptographic Algorithms

MAC algorithm

hmac-sha1* HMAC-SHA1; digest
length = key length = 20

hmac-sha1-96** First 96 bits of HMAC-
SHA1; digest length = 12;
key length = 20

hmac-md5 HMAC-MD5; digest
length = key length = 16

hmac-md5-96 First 96 bits of
HMAC-MD5;
digest length = 12;
key length = 16

Compression algorithm

none* No compression

zlib Defined in RFC 1950 and
RFC 1951

Cipher

3des-cbc* Three-key 3DES in CBC
mode

blowfish-cbc Blowfish in CBC mode

twofish256-cbc Twofish in CBC mode with
a 256-bit key

twofish192-cbc Twofish with a 192-bit key

twofish128-cbc Twofish with a 128-bit key

aes256-cbc AES in CBC mode with a
256-bit key

aes192-cbc AES with a 192-bit key

aes128-cbc** AES with a 128-bit key

Serpent256-cbc Serpent in CBC mode with
a 256-bit key

Serpent192-cbc Serpent with a 192-bit key

Serpent128-cbc Serpent with a 128-bit key

arcfour RC4 with a 128-bit key

cast128-cbc CAST-128 in CBC mode

* = Required
** = Recommended

M06_STAL4855_06_GE_C06.indd 212 8/9/16 9:10 PM

6.4 / Secure Shell (SSH)  213

C’s identification string; K_S is S’s public host key; I_C is C’s SSH_MSG_KEXINIT
message and I_S is S’s SSH_MSG_KEXINIT message that have been exchanged
before this part begins. The values of p, g, and q are known to both client and server
as a result of the algorithm selection negotiation. The hash function hash() is also
decided during algorithm negotiation.

1.	 C generates a random number x(1 6 x 6 q) and computes e = gx mod p. C
sends e to S.

2.	 S generates a random number y(0 6 y 6 q) and computes f = gy mod p.
S receives e. It computes K = ey mod p, H = hash(V_C ‘ V_S ‘ I_C ‘ I_S ‘ K_S ‘
e ‘ f ‘ K), and signature s on H with its private host key. S sends (K_S ‘ f ‘ s)
to C. The signing operation may involve a second hashing operation.

3.	 C verifies that K_S really is the host key for S (e.g., using certificates or a local
database). C is also allowed to accept the key without verification; however,
doing so will render the protocol insecure against active attacks (but may be
desirable for practical reasons in the short term in many environments). C then
computes K = f x mod p, H = hash(V_C ‘ V_S ‘ I_C ‘ I_S ‘ K_S ‘ e ‘ f ‘ K), and
verifies the signature s on H.

As a result of these steps, the two sides now share a master key K. In addition,
the server has been authenticated to the client, because the server has used its pri-
vate key to sign its half of the Diffie–Hellman exchange. Finally, the hash value H
serves as a session identifier for this connection. Once computed, the session identi-
fier is not changed, even if the key exchange is performed again for this connection
to obtain fresh keys.

The end of key exchange is signaled by the exchange of SSH_MSG_NEWKEYS
packets. At this point, both sides may start using the keys generated from K, as dis-
cussed subsequently.

The final step is service request. The client sends an SSH_MSG_SERVICE_
REQUEST packet to request either the User Authentication or the Connection
Protocol. Subsequent to this, all data is exchanged as the payload of an SSH
Transport Layer packet, protected by encryption and MAC.

Key Generation  The keys used for encryption and MAC (and any needed IVs)
are generated from the shared secret key K, the hash value from the key exchange
H, and the session identifier, which is equal to H unless there has been a subsequent
key exchange after the initial key exchange. The values are computed as follows.

■■ Initial IV client to server: HASH(K ‘ H ‘ ;A< ‘ session_id)

■■ Initial IV server to client: HASH(K ‘ H ‘ ;B< ‘ session_id)

■■ Encryption key client to server: HASH(K ‘ H ‘ ;C< ‘ session_id)

■■ Encryption key server to client: HASH(K ‘ H ‘ ;D< ‘ session_id)

■■ Integrity key client to server: HASH(K ‘ H ‘ ;E< ‘ session_id)

■■ Integrity key server to client: HASH(K ‘ H ‘ ;F< ‘ session_id)

where HASH() is the hash function determined during algorithm negotiation.

M06_STAL4855_06_GE_C06.indd 213 8/9/16 9:10 PM

214   chapter 6 / Transport-Level Security

User Authentication Protocol

The User Authentication Protocol provides the means by which the client is
authenticated to the server.

Message Types and Formats  Three types of messages are always used in the User
Authentication Protocol. Authentication requests from the client have the format:

byte SSH_MSG_USERAUTH_REQUEST (50)

string user name

string service name

string method name

 . . . method specific fields

where user name is the authorization identity the client is claiming, service
name is the facility to which the client is requesting access (typically the SSH
Connection Protocol), and method name is the authentication method being
used in this request. The first byte has decimal value 50, which is interpreted as
SSH_MSG_USERAUTH_REQUEST.

If the server either (1) rejects the authentication request or (2) accepts the
request but requires one or more additional authentication methods, the server
sends a message with the format:

byte SSH_MSG_USERAUTH_FAILURE (51)

name-list authentications that can continue

boolean partial success

where the name-list is a list of methods that may productively continue the dialog.
If the server accepts authentication, it sends a single byte message: SSH_MSG_
USERAUTH_SUCCESS (52).

Message Exchange  The message exchange involves the following steps.

1.	 The client sends a SSH_MSG_USERAUTH_REQUEST with a requested method
of none.

2.	 The server checks to determine if the user name is valid. If not, the server
returns SSH_MSG_USERAUTH_FAILURE with the partial success value of
false. If the user name is valid, the server proceeds to step 3.

3.	 The server returns SSH_MSG_USERAUTH_FAILURE with a list of one or more
authentication methods to be used.

4.	 The client selects one of the acceptable authentication methods and sends a
SSH_MSG_USERAUTH_REQUEST with that method name and the required
method-specific fields. At this point, there may be a sequence of exchanges to
perform the method.

M06_STAL4855_06_GE_C06.indd 214 8/9/16 9:10 PM

6.4 / Secure Shell (SSH)  215

5.	 If the authentication succeeds and more authentication methods are required,
the server proceeds to step 3, using a partial success value of true. If the
authentication fails, the server proceeds to step 3, using a partial success value
of false.

6.	 When all required authentication methods succeed, the server sends a
SSH_MSG_USERAUTH_SUCCESS message, and the Authentication Protocol
is over.

Authentication Methods  The server may require one or more of the following
authentication methods.

■■ publickey: The details of this method depend on the public-key algorithm
chosen. In essence, the client sends a message to the server that contains
the client’s public key, with the message signed by the client’s private key.
When the server receives this message, it checks whether the supplied key
is acceptable for authentication and, if so, it checks whether the signature is
correct.

■■ password: The client sends a message containing a plaintext password, which
is protected by encryption by the Transport Layer Protocol.

■■ hostbased: Authentication is performed on the client’s host rather than the
client itself. Thus, a host that supports multiple clients would provide authen-
tication for all its clients. This method works by having the client send a signa-
ture created with the private key of the client host. Thus, rather than directly
verifying the user’s identity, the SSH server verifies the identity of the client
host—and then believes the host when it says the user has already authenti-
cated on the client side.

Connection Protocol

The SSH Connection Protocol runs on top of the SSH Transport Layer Protocol
and assumes that a secure authentication connection is in use.2 That secure authen-
tication connection, referred to as a tunnel, is used by the Connection Protocol to
multiplex a number of logical channels.

Channel Mechanism  All types of communication using SSH, such as a terminal
session, are supported using separate channels. Either side may open a channel.
For each channel, each side associates a unique channel number, which need not be
the same on both ends. Channels are flow controlled using a window mechanism.
No data may be sent to a channel until a message is received to indicate that window
space is available.

2RFC 4254, The Secure Shell (SSH) Connection Protocol, states that the Connection Protocol runs on
top of the Transport Layer Protocol and the User Authentication Protocol. RFC 4251, SSH Protocol
Architecture, states that the Connection Protocol runs over the User Authentication Protocol. In fact, the
Connection Protocol runs over the Transport Layer Protocol, but assumes that the User Authentication
Protocol has been previously invoked.

M06_STAL4855_06_GE_C06.indd 215 8/9/16 9:10 PM

216   chapter 6 / Transport-Level Security

The life of a channel progresses through three stages: opening a channel, data
transfer, and closing a channel.

When either side wishes to open a new channel, it allocates a local number for
the channel and then sends a message of the form:

byte SSH_MSG_CHANNEL_OPEN

string channel type

uint32 sender channel

uint32 initial window size

uint32 maximum packet size

.... channel type specific data follows

where uint32 means unsigned 32-bit integer. The channel type identifies the appli-
cation for this channel, as described subsequently. The sender channel is the local
channel number. The initial window size specifies how many bytes of channel data
can be sent to the sender of this message without adjusting the window. The maxi-
mum packet size specifies the maximum size of an individual data packet that can
be sent to the sender. For example, one might want to use smaller packets for inter-
active connections to get better interactive response on slow links.

If the remote side is able to open the channel, it returns a SSH_MSG_CHANNEL_
OPEN_CONFIRMATION message, which includes the sender channel number, the
recipient channel number, and window and packet size values for incoming traffic.
Otherwise, the remote side returns a SSH_MSG_CHANNEL_OPEN_FAILURE
message with a reason code indicating the reason for failure.

Once a channel is open, data transfer is performed using a SSH_MSG_
CHANNEL_DATA message, which includes the recipient channel number and a block
of data. These messages, in both directions, may continue as long as the channel
is open.

When either side wishes to close a channel, it sends a SSH_MSG_CHANNEL_
CLOSE message, which includes the recipient channel number.

Figure 6.11 provides an example of Connection Protocol Message Exchange.

Channel Types  Four channel types are recognized in the SSH Connection Protocol
specification.

■■ session: The remote execution of a program. The program may be a shell, an
application such as file transfer or e-mail, a system command, or some built-in
subsystem. Once a session channel is opened, subsequent requests are used to
start the remote program.

■■ x11: This refers to the X Window System, a computer software system and
network protocol that provides a graphical user interface (GUI) for net-
worked computers. X allows applications to run on a network server but to be
displayed on a desktop machine.

M06_STAL4855_06_GE_C06.indd 216 8/9/16 9:10 PM

6.4 / Secure Shell (SSH)  217

■■ forwarded-tcpip: This is remote port forwarding, as explained in the next
subsection.

■■ direct-tcpip: This is local port forwarding, as explained in the next subsection.

Port Forwarding  One of the most useful features of SSH is port forwarding. In
essence, port forwarding provides the ability to convert any insecure TCP connec-
tion into a secure SSH connection. This is also referred to as SSH tunneling. We
need to know what a port is in this context. A port is an identifier of a user of
TCP. So, any application that runs on top of TCP has a port number. Incoming TCP
traffic is delivered to the appropriate application on the basis of the port number.
An application may employ multiple port numbers. For example, for the Simple
Mail Transfer Protocol (SMTP), the server side generally listens on port 25, so an

Figure 6.11  Example of SSH Connection Protocol Message Exchange

Client Server

SSH_MSG_CHANNEL_OPEN
Open a
channel

Data
transfer

Close a
channel

SSH_MSG_CHANNEL_OPEN_CONFIRMATION

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_DATA

SSH_MSG_CHANNEL_CLOSE

Establish Authenticated Transport Layer Connection

M06_STAL4855_06_GE_C06.indd 217 8/9/16 9:10 PM

218   chapter 6 / Transport-Level Security

incoming SMTP request uses TCP and addresses the data to destination port 25.
TCP recognizes that this is the SMTP server address and routes the data to the
SMTP server application.

Figure 6.12 illustrates the basic concept behind port forwarding. We have
a client application that is identified by port number x and a server application
identified by port number y. At some point, the client application invokes the local
TCP entity and requests a connection to the remote server on port y. The local
TCP entity negotiates a TCP connection with the remote TCP entity, such that the
connection links local port x to remote port y.

To secure this connection, SSH is configured so that the SSH Transport Layer
Protocol establishes a TCP connection between the SSH client and server entities,
with TCP port numbers a and b, respectively. A secure SSH tunnel is established

Figure 6.12  SSH Transport Layer Packet Exchanges

Client
Server

Client
application

Unsecure TCP connection

(a) Connection via TCP

TCP
entity

x y

Server
application

TCP
entity

Client
application

Secure SSH tunnel

(b) Connection via SSH tunnel

SSH
entity

x y

Server
application

SSH
entity

Unsecure TCP connectionTCP
entity

a b
TCP
entity

M06_STAL4855_06_GE_C06.indd 218 8/9/16 9:10 PM

6.4 / Secure Shell (SSH)  219

over this TCP connection. Traffic from the client at port x is redirected to the local
SSH entity and travels through the tunnel where the remote SSH entity delivers the
data to the server application on port y. Traffic in the other direction is similarly
redirected.

SSH supports two types of port forwarding: local forwarding and remote for-
warding. Local forwarding allows the client to set up a “hijacker” process. This will
intercept selected application-level traffic and redirect it from an unsecured TCP
connection to a secure SSH tunnel. SSH is configured to listen on selected ports.
SSH grabs all traffic using a selected port and sends it through an SSH tunnel. On
the other end, the SSH server sends the incoming traffic to the destination port dic-
tated by the client application.

The following example should help clarify local forwarding. Suppose you have
an e-mail client on your desktop and use it to get e-mail from your mail server via
the Post Office Protocol (POP). The assigned port number for POP3 is port 110. We
can secure this traffic in the following way:

1.	 The SSH client sets up a connection to the remote server.

2.	 Select an unused local port number, say 9999, and configure SSH to accept
traffic from this port destined for port 110 on the server.

3.	 The SSH client informs the SSH server to create a connection to the destina-
tion, in this case mailserver port 110.

4.	 The client takes any bits sent to local port 9999 and sends them to the server
inside the encrypted SSH session. The SSH server decrypts the incoming bits
and sends the plaintext to port 110.

5.	 In the other direction, the SSH server takes any bits received on port 110 and
sends them inside the SSH session back to the client, who decrypts and sends
them to the process connected to port 9999.

With remote forwarding, the user’s SSH client acts on the server’s behalf.
The client receives traffic with a given destination port number, places the traf-
fic on the correct port and sends it to the destination the user chooses. A typical
example of remote forwarding is the following. You wish to access a server at
work from your home computer. Because the work server is behind a firewall, it
will not accept an SSH request from your home computer. However, from work
you can set up an SSH tunnel using remote forwarding. This involves the follow-
ing steps.

1.	 From the work computer, set up an SSH connection to your home computer.
The firewall will allow this, because it is a protected outgoing connection.

2.	 Configure the SSH server to listen on a local port, say 22, and to deliver data
across the SSH connection addressed to remote port, say 2222.

3.	 You can now go to your home computer, and configure SSH to accept traffic
on port 2222.

4.	 You now have an SSH tunnel that can be used for remote logon to the work
server.

M06_STAL4855_06_GE_C06.indd 219 8/9/16 9:10 PM

220   chapter 6 / Transport-Level Security

	 6.5	 Key Terms, Review Questions, And Problems

Key Terms

Alert protocol
Change Cipher Spec protocol
Handshake protocol

HTTPS (HTTP over SSL)
Master Secret
Secure Shell (SSH)

Secure Socket Layer (SSL)
Transport Layer Security

(TLS)

Review Questions

	 6.1	 What are the advantages of each of the three approaches shown in Figure 6.1?
	 6.2	 What protocols comprise TLS?
	 6.3	 What is the difference between a TLS connection and a TLS session?
	 6.4	 List and briefly define the parameters that define a TLS session state.
	 6.5	 List and briefly define the parameters that define a TLS session connection.
	 6.6	 What services are provided by the TLS Record Protocol?
	 6.7	 What steps are involved in the TLS Record Protocol transmission?
	 6.8	 Give brief details about different levels of awareness of a connection in HTTPS.
	 6.9	 Which protocol was replaced by SSH and why? Which version is currently in the

process of being standardized?
	 6.10	 List and briefly define the SSH protocols.

Problems

	 6.1	 In SSL and TLS, why is there a separate Change Cipher Spec Protocol rather than
including a change_cipher_spec message in the Handshake Protocol?

	 6.2	 What purpose does the MAC serve during the change cipher spec TLS exchange?
	 6.3	 Consider the following threats to Web security and describe how each is countered by

a particular feature of TLS.
a.	 Brute-Force Cryptanalytic Attack: An exhaustive search of the key space for a

conventional encryption algorithm.
b.	 Known Plaintext Dictionary Attack: Many messages will contain predictable

plaintext, such as the HTTP GET command. An attacker constructs a diction-
ary containing every possible encryption of the known-plaintext message. When
an encrypted message is intercepted, the attacker takes the portion containing
the encrypted known plaintext and looks up the ciphertext in the dictionary. The
ciphertext should match against an entry that was encrypted with the same secret
key. If there are several matches, each of these can be tried against the full cipher-
text to determine the right one. This attack is especially effective against small key
sizes (e.g., 40-bit keys).

c.	 Replay Attack: Earlier TLS handshake messages are replayed.
d.	 Man-in-the-Middle Attack: An attacker interposes during key exchange, acting as

the client to the server and as the server to the client.
e.	 Password Sniffing: Passwords in HTTP or other application traffic are eaves-

dropped.
f.	 IP Spoofing: Uses forged IP addresses to fool a host into accepting bogus data.

M06_STAL4855_06_GE_C06.indd 220 8/9/16 9:10 PM

6.5 / Key Terms, Review Questions, And Problems  221

g.	 IP Hijacking: An active, authenticated connection between two hosts is disrupted
and the attacker takes the place of one of the hosts.

h.	 SYN Flooding: An attacker sends TCP SYN messages to request a connection
but does not respond to the final message to establish the connection fully. The
attacked TCP module typically leaves the “half-open connection” around for a few
minutes. Repeated SYN messages can clog the TCP module.

	 6.4	 Based on what you have learned in this chapter, is it possible in TLS for the receiver
to reorder TLS record blocks that arrive out of order? If so, explain how it can be
done. If not, why not?

	 6.5	 For SSH packets, what is the advantage, if any, of not including the MAC in the scope
of the packet encryption?

M06_STAL4855_06_GE_C06.indd 221 8/9/16 9:11 PM

222222

7.1	 Wireless Security

Wireless Network Threats
Wireless Security Measures

7.2	 Mobile Device Security

Security Threats
Mobile Device Security Strategy

7.3	 IEEE 802.11 Wireless LAN Overview

The Wi-Fi Alliance
IEEE 802 Protocol Architecture
IEEE 802.11 Network Components and Architectural Model
IEEE 802.11 Services

7.4	 IEEE 802.11i Wireless LAN Security

IEEE 802.11i Services
IEEE 802.11i Phases of Operation
Discovery Phase
Authentication Phase
Key Management Phase
Protected Data Transfer Phase
The IEEE 802.11i Pseudorandom Function

7.5	 Key Terms, Review Questions, and Problems

Chapter

Wireless Network Security

M07_STAL4855_06_GE_C07.indd 222 8/9/16 9:15 PM

7.1 / Wireless Security  223

This chapter begins with a general overview of wireless security issues. We then focus
on the relatively new area of mobile device security, examining threats and counter-
measures for mobile devices used in the enterprise. Then, we look at the IEEE 802.11i
standard for wireless LAN security. This standard is part of IEEE 802.11, also referred
to as Wi-Fi. We begin the discussion with an overview of IEEE 802.11, and then we
look in some detail at IEEE 802.11i.

	 7.1	 Wireless Security

Wireless networks, and the wireless devices that use them, introduce a host of secu-
rity problems over and above those found in wired networks. Some of the key fac-
tors contributing to the higher security risk of wireless networks compared to wired
networks include the following [MA10]:

■■ Channel: Wireless networking typically involves broadcast communications,
which is far more susceptible to eavesdropping and jamming than wired
networks. Wireless networks are also more vulnerable to active attacks that
exploit vulnerabilities in communications protocols.

■■ Mobility: Wireless devices are, in principal and usually in practice, far more
portable and mobile than wired devices. This mobility results in a number of
risks, described subsequently.

■■ Resources: Some wireless devices, such as smartphones and tablets, have
sophisticated operating systems but limited memory and processing resources
with which to counter threats, including denial of service and malware.

■■ Accessibility: Some wireless devices, such as sensors and robots, may be left
unattended in remote and/or hostile locations. This greatly increases their
vulnerability to physical attacks.

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Present an overview of security threats and countermeasures for wireless
networks.

◆◆ Understand the unique security threats posed by the use of mobile devices
with enterprise networks.

◆◆ Describe the principal elements in a mobile device security strategy.

◆◆ Understand the essential elements of the IEEE 802.11 wireless LAN
standard.

◆◆ Summarize the various components of the IEEE 802.11i wireless LAN
security architecture.

M07_STAL4855_06_GE_C07.indd 223 8/9/16 9:15 PM

224   chapter 7 / Wireless Network Security

In simple terms, the wireless environment consists of three components that
provide point of attack (Figure 7.1). The wireless client can be a cell phone, a
Wi-Fi–enabled laptop or tablet, a wireless sensor, a Bluetooth device, and so on.
The wireless access point provides a connection to the network or service. Examples
of access points are cell towers, Wi-Fi hotspots, and wireless access points to wired
local or wide area networks. The transmission medium, which carries the radio
waves for data transfer, is also a source of vulnerability.

Wireless Network Threats

[CHOI08] lists the following security threats to wireless networks:

■■ Accidental association: Company wireless LANs or wireless access points to
wired LANs in close proximity (e.g., in the same or neighboring buildings)
may create overlapping transmission ranges. A user intending to connect to
one LAN may unintentionally lock on to a wireless access point from a neigh-
boring network. Although the security breach is accidental, it nevertheless
exposes resources of one LAN to the accidental user.

■■ Malicious association: In this situation, a wireless device is configured to
appear to be a legitimate access point, enabling the operator to steal pass-
words from legitimate users and then penetrate a wired network through a
legitimate wireless access point.

■■ Ad hoc networks: These are peer-to-peer networks between wireless comput-
ers with no access point between them. Such networks can pose a security
threat due to a lack of a central point of control.

■■ Nontraditional networks: Nontraditional networks and links, such as personal
network Bluetooth devices, barcode readers, and handheld PDAs, pose a secu-
rity risk in terms of both eavesdropping and spoofing.

■■ Identity theft (MAC spoofing): This occurs when an attacker is able to eaves-
drop on network traffic and identify the MAC address of a computer with
network privileges.

■■ Man-in-the middle attacks: This type of attack is described in Chapter 3 in
the context of the Diffie–Hellman key exchange protocol. In a broader sense,
this attack involves persuading a user and an access point to believe that they
are talking to each other when in fact the communication is going through an
intermediate attacking device. Wireless networks are particularly vulnerable
to such attacks.

Figure 7.1  Wireless Networking Components

Endpoint Wireless medium Access point

M07_STAL4855_06_GE_C07.indd 224 8/9/16 9:15 PM

7.1 / Wireless Security  225

■■ Denial of service (DoS): This type of attack is discussed in detail in Chapter 10.
In the context of a wireless network, a DoS attack occurs when an attacker
continually bombards a wireless access point or some other accessible wireless
port with various protocol messages designed to consume system resources.
The wireless environment lends itself to this type of attack, because it is so
easy for the attacker to direct multiple wireless messages at the target.

■■ Network injection: A network injection attack targets wireless access points
that are exposed to nonfiltered network traffic, such as routing protocol mes-
sages or network management messages. An example of such an attack is
one in which bogus reconfiguration commands are used to affect routers and
switches to degrade network performance.

Wireless Security Measures

Following [CHOI08], we can group wireless security measures into those dealing
with wireless transmissions, wireless access points, and wireless networks (consist-
ing of wireless routers and endpoints).

Securing Wireless Transmissions  The principal threats to wireless transmission
are eavesdropping, altering or inserting messages, and disruption. To deal with
eavesdropping, two types of countermeasures are appropriate:

■■ Signal-hiding techniques: Organizations can take a number of measures to
make it more difficult for an attacker to locate their wireless access points,
including turning off service set identifier (SSID) broadcasting by wireless
access points; assigning cryptic names to SSIDs; reducing signal strength to the
lowest level that still provides requisite coverage; and locating wireless access
points in the interior of the building, away from windows and exterior walls.
Greater security can be achieved by the use of directional antennas and of
signal-shielding techniques.

■■ Encryption: Encryption of all wireless transmission is effective against eaves-
dropping to the extent that the encryption keys are secured.

The use of encryption and authentication protocols is the standard method of
countering attempts to alter or insert transmissions.

The methods discussed in Chapter 10 for dealing with DoS apply to wireless
transmissions. Organizations can also reduce the risk of unintentional DoS attacks.
Site surveys can detect the existence of other devices using the same frequency
range, to help determine where to locate wireless access points. Signal strengths can
be adjusted and shielding used in an attempt to isolate a wireless environment from
competing nearby transmissions.

Securing Wireless Access Points  The main threat involving wireless access
points is unauthorized access to the network. The principal approach for preventing
such access is the IEEE 802.1X standard for port-based network access control. The
standard provides an authentication mechanism for devices wishing to attach to a
LAN or wireless network. The use of 802.1X can prevent rogue access points and
other unauthorized devices from becoming insecure backdoors.

Section 5.3 provides an introduction to 802.1X.

M07_STAL4855_06_GE_C07.indd 225 8/9/16 9:15 PM

226   chapter 7 / Wireless Network Security

Securing Wireless Networks  [CHOI08] recommends the following techniques
for wireless network security:

1.	 Use encryption. Wireless routers are typically equipped with built-in encryp-
tion mechanisms for router-to-router traffic.

2.	 Use antivirus and antispyware software, and a firewall. These facilities should
be enabled on all wireless network endpoints.

3.	 Turn off identifier broadcasting. Wireless routers are typically configured to
broadcast an identifying signal so that any device within range can learn of
the router’s existence. If a network is configured so that authorized devices
know the identity of routers, this capability can be disabled, so as to thwart
attackers.

4.	 Change the identifier on your router from the default. Again, this measure
thwarts attackers who will attempt to gain access to a wireless network using
default router identifiers.

5.	 Change your router’s pre-set password for administration. This is another
prudent step.

6.	 Allow only specific computers to access your wireless network. A router can
be configured to only communicate with approved MAC addresses. Of course,
MAC addresses can be spoofed, so this is just one element of a security strategy.

	 7.2	 Mobile Device Security

Prior to the widespread use of smartphones, the dominant paradigm for computer
and network security in organizations was as follows. Corporate IT was tightly con-
trolled. User devices were typically limited to Windows PCs. Business applications
were controlled by IT and either run locally on endpoints or on physical servers
in data centers. Network security was based upon clearly defined perimeters that
separated trusted internal networks from the untrusted Internet. Today, there have
been massive changes in each of these assumptions. An organization’s networks
must accommodate the following:

■■ Growing use of new devices: Organizations are experiencing significant growth
in employee use of mobile devices. In many cases, employees are allowed to
use a combination of endpoint devices as part of their day-to-day activities.

■■ Cloud-based applications: Applications no longer run solely on physical
servers in corporate data centers. Quite the opposite, applications can run
anywhere—on traditional physical servers, on mobile virtual servers, or in the
cloud. Additionally, end users can now take advantage of a wide variety of
cloud-based applications and IT services for personal and professional use.
Facebook can be used for an employee’s personal profiles or as a component
of a corporate marketing campaign. Employees depend upon Skype to speak
with friends abroad or for legitimate business video conferencing. Dropbox
and Box can be used to distribute documents between corporate and personal
devices for mobility and user productivity.

M07_STAL4855_06_GE_C07.indd 226 8/9/16 9:15 PM

7.2 / Mobile Device Security  227

■■ De-perimeterization: Given new device proliferation, application mobility,
and cloud-based consumer and corporate services, the notion of a static net-
work perimeter is all but gone. Now there are a multitude of network perim-
eters around devices, applications, users, and data. These perimeters have also
become quite dynamic as they must adapt to various environmental conditions
such as user role, device type, server virtualization mobility, network location,
and time-of-day.

■■ External business requirements: The enterprise must also provide guests,
third-party contractors, and business partners network access using various
devices from a multitude of locations.

The central element in all of these changes is the mobile computing device.
Mobile devices have become an essential element for organizations as part of the
overall network infrastructure. Mobile devices such as smartphones, tablets, and
memory sticks provide increased convenience for individuals as well as the poten-
tial for increased productivity in the workplace. Because of their widespread use
and unique characteristics, security for mobile devices is a pressing and complex
issue. In essence, an organization needs to implement a security policy through a
combination of security features built into the mobile devices and additional secu-
rity controls provided by network components that regulate the use of the mobile
devices.

Security Threats

Mobile devices need additional, specialized protection measures beyond those
implemented for other client devices, such as desktop and laptop devices that are
used only within the organization’s facilities and on the organization’s networks.
SP 800-14 (Guidelines for Managing and Securing Mobile Devices in the Enterprise,
July 2012) lists seven major security concerns for mobile devices. We examine each
of these in turn.

Lack of Physical Security Controls  Mobile devices are typically under the com-
plete control of the user, and are used and kept in a variety of locations outside the
organization’s control, including off premises. Even if a device is required to remain
on premises, the user may move the device within the organization between secure
and nonsecured locations. Thus, theft and tampering are realistic threats.

The security policy for mobile devices must be based on the assumption that
any mobile device may be stolen or at least accessed by a malicious party. The threat
is twofold: A malicious party may attempt to recover sensitive data from the device
itself, or may use the device to gain access to the organization’s resources.

Use of Untrusted Mobile Devices  In addition to company-issued and company-
controlled mobile devices, virtually all employees will have personal smartphones
and/or tablets. The organization must assume that these devices are not trustworthy.
That is, the devices may not employ encryption and either the user or a third party
may have installed a bypass to the built-in restrictions on security, operating system
use, and so on.

M07_STAL4855_06_GE_C07.indd 227 8/9/16 9:15 PM

228   chapter 7 / Wireless Network Security

Use of Untrusted Networks  If a mobile device is used on premises, it can connect
to organization resources over the organization’s own in-house wireless networks.
However, for off-premises use, the user will typically access organizational resources
via Wi-Fi or cellular access to the Internet and from the Internet to the organiza-
tion. Thus, traffic that includes an off-premises segment is potentially susceptible to
eavesdropping or man-in-the-middle types of attacks. Thus, the security policy must
be based on the assumption that the networks between the mobile device and the
organization are not trustworthy.

Use of Applications Created by Unknown Parties  By design, it is easy to find
and install third-party applications on mobile devices. This poses the obvious risk of
installing malicious software. An organization has several options for dealing with
this threat, as described subsequently.

Interaction with Other Systems  A common feature found on smartphones and
tablets is the ability to automatically synchronize data, apps, contacts, photos, and
so on with other computing devices and with cloud-based storage. Unless an orga-
nization has control of all the devices involved in synchronization, there is consider-
able risk of the organization’s data being stored in an unsecured location, plus the
risk of the introduction of malware.

Use of Untrusted Content  Mobile devices may access and use content that other
computing devices do not encounter. An example is the Quick Response (QR)
code, which is a two-dimensional barcode. QR codes are designed to be captured
by a mobile device camera and used by the mobile device. The QR code translates
to a URL, so that a malicious QR code could direct the mobile device to malicious
Web sites.

Use of Location Services  The GPS capability on mobile devices can be used to
maintain a knowledge of the physical location of the device. While this feature
might be useful to an organization as part of a presence service, it creates security
risks. An attacker can use the location information to determine where the device
and user are located, which may be of use to the attacker.

Mobile Device Security Strategy

With the threats listed in the preceding discussion in mind, we outline the principal
elements of a mobile device security strategy. They fall into three categories: device
security, client/server traffic security, and barrier security (Figure 7.2).

Device Security  A number of organizations will supply mobile devices for
employee use and preconfigure those devices to conform to the enterprise secu-
rity policy. However, many organizations will find it convenient or even necessary
to adopt a bring-your-own-device (BYOD) policy that allows the personal mobile
devices of employees to have access to corporate resources. IT managers should be
able to inspect each device before allowing network access. IT will want to estab-
lish configuration guidelines for operating systems and applications. For example,
“rooted” or “jail-broken” devices are not permitted on the network, and mobile

M07_STAL4855_06_GE_C07.indd 228 8/9/16 9:15 PM

7.2 / Mobile Device Security  229

devices cannot store corporate contacts on local storage. Whether a device is owned
by the organization or BYOD, the organization should configure the device with
security controls, including the following:

■■ Enable auto-lock, which causes the device to lock if it has not been used for a
given amount of time, requiring the user to re-enter a four-digit PIN or a pass-
word to re-activate the device.

■■ Enable password or PIN protection. The PIN or password is needed to unlock
the device. In addition, it can be configured so that e-mail and other data on
the device are encrypted using the PIN or password and can only be retrieved
with the PIN or password.

■■ Avoid using auto-complete features that remember user names or passwords.

■■ Enable remote wipe.

■■ Ensure that SSL protection is enabled, if available.

■■ Make sure that software, including operating systems and applications, is up
to date.

■■ Install antivirus software as it becomes available.

Figure 7.2  Mobile Device Security Elements

Firewall

Firewall limits
scope of data
and application
access

Authentication
and access control
protocols used to
verify device and user
and establish limits
on access

Mobile device is
con�gured with
security mechanisms and
parameters to conform to
organization security policy

Tra�c is encrypted;
uses SSL or IPsec
VPN tunnel

Authentication/
access control
server

Mobile device
con
guration
server

Application/
database
server

M07_STAL4855_06_GE_C07.indd 229 8/9/16 9:15 PM

230   chapter 7 / Wireless Network Security

■■ Either sensitive data should be prohibited from storage on the mobile device
or it should be encrypted.

■■ IT staff should also have the ability to remotely access devices, wipe the device
of all data, and then disable the device in the event of loss or theft.

■■ The organization may prohibit all installation of third-party applications,
implement whitelisting to prohibit installation of all unapproved applications,
or implement a secure sandbox that isolates the organization’s data and appli-
cations from all other data and applications on the mobile device. Any applica-
tion that is on an approved list should be accompanied by a digital signature
and a public-key certificate from an approved authority.

■■ The organization can implement and enforce restrictions on what devices can
synchronize and on the use of cloud-based storage.

■■ To deal with the threat of untrusted content, security responses can include
training of personnel on the risks inherent in untrusted content and disabling
camera use on corporate mobile devices.

■■ To counter the threat of malicious use of location services, the security policy
can dictate that such service is disabled on all mobile devices.

Traffic Security  Traffic security is based on the usual mechanisms for encryption
and authentication. All traffic should be encrypted and travel by secure means, such
as SSL or IPv6. Virtual private networks (VPNs) can be configured so that all traffic
between the mobile device and the organization’s network is via a VPN.

A strong authentication protocol should be used to limit the access from the
device to the resources of the organization. Often, a mobile device has a single
device-specific authenticator, because it is assumed that the device has only one
user. A preferable strategy is to have a two-layer authentication mechanism, which
involves authenticating the device and then authenticating the user of the device.

Barrier Security  The organization should have security mechanisms to protect
the network from unauthorized access. The security strategy can also include fire-
wall policies specific to mobile device traffic. Firewall policies can limit the scope
of data and application access for all mobile devices. Similarly, intrusion detection
and intrusion prevention systems can be configured to have tighter rules for mobile
device traffic.

	 7.3	IEEE 802.11 Wireless Lan Overview

IEEE 802 is a committee that has developed standards for a wide range of local area
networks (LANs). In 1990, the IEEE 802 Committee formed a new working group,
IEEE 802.11, with a charter to develop a protocol and transmission specifications
for wireless LANs (WLANs). Since that time, the demand for WLANs at different
frequencies and data rates has exploded. Keeping pace with this demand, the IEEE
802.11 working group has issued an ever-expanding list of standards. Table 7.1
briefly defines key terms used in the IEEE 802.11 standard.

M07_STAL4855_06_GE_C07.indd 230 8/9/16 9:15 PM

7.3 / IEEE 802.11 Wireless Lan Overview  231

The Wi-Fi Alliance

The first 802.11 standard to gain broad industry acceptance was 802.11b. Although
802.11b products are all based on the same standard, there is always a concern
whether products from different vendors will successfully interoperate. To meet
this concern, the Wireless Ethernet Compatibility Alliance (WECA), an indus-
try consortium, was formed in 1999. This organization, subsequently renamed the
Wi-Fi (Wireless Fidelity) Alliance, created a test suite to certify interoperability for
802.11b products. The term used for certified 802.11b products is Wi-Fi. Wi-Fi certi-
fication has been extended to 802.11g products. The Wi-Fi Alliance has also devel-
oped a certification process for 802.11a products, called Wi-Fi5. The Wi-Fi Alliance
is concerned with a range of market areas for WLANs, including enterprise, home,
and hot spots.

More recently, the Wi-Fi Alliance has developed certification procedures for
IEEE 802.11 security standards, referred to as Wi-Fi Protected Access (WPA). The
most recent version of WPA, known as WPA2, incorporates all of the features of
the IEEE 802.11i WLAN security specification.

IEEE 802 Protocol Architecture

Before proceeding, we need to briefly preview the IEEE 802 protocol architecture.
IEEE 802.11 standards are defined within the structure of a layered set of protocols.
This structure, used for all IEEE 802 standards, is illustrated in Figure 7.3.

Physical Layer  The lowest layer of the IEEE 802 reference model is the physical
layer, which includes such functions as encoding/decoding of signals and bit trans-
mission/reception. In addition, the physical layer includes a specification of the
transmission medium. In the case of IEEE 802.11, the physical layer also defines
frequency bands and antenna characteristics.

Access point (AP) Any entity that has station functionality and provides access to the
distribution system via the wireless medium for associated stations.

Basic service set (BSS) A set of stations controlled by a single coordination function.

Coordination function The logical function that determines when a station operating within a BSS
is permitted to transmit and may be able to receive PDUs.

Distribution system (DS) A system used to interconnect a set of BSSs and integrated LANs to create
an ESS.

Extended service set (ESS) A set of one or more interconnected BSSs and integrated LANs that
appear as a single BSS to the LLC layer at any station associated with one
of these BSSs.

MAC protocol data unit
(MPDU)

The unit of data exchanged between two peer MAC entities using the
services of the physical layer.

MAC service data unit
(MSDU)

Information that is delivered as a unit between MAC users.

Station Any device that contains an IEEE 802.11 conformant MAC and physical
layer.

Table 7.1  IEEE 802.11 Terminology

M07_STAL4855_06_GE_C07.indd 231 8/9/16 9:15 PM

232   chapter 7 / Wireless Network Security

Media Access Control  All LANs consist of collections of devices that share the
network’s transmission capacity. Some means of controlling access to the transmis-
sion medium is needed to provide an orderly and efficient use of that capacity. This
is the function of a media access control (MAC) layer. The MAC layer receives data
from a higher-layer protocol, typically the Logical Link Control (LLC) layer, in the
form of a block of data known as the MAC service data unit (MSDU). In general,
the MAC layer performs the following functions:

■■ On transmission, assemble data into a frame, known as a MAC protocol data
unit (MPDU) with address and error-detection fields.

■■ On reception, disassemble frame, and perform address recognition and error
detection.

■■ Govern access to the LAN transmission medium.

The exact format of the MPDU differs somewhat for the various MAC proto-
cols in use. In general, all of the MPDUs have a format similar to that of Figure 7.4.
The fields of this frame are as follows.

■■ MAC Control: This field contains any protocol control information needed for
the functioning of the MAC protocol. For example, a priority level could be
indicated here.

■■ Destination MAC Address: The destination physical address on the LAN for
this MPDU.

■■ Source MAC Address: The source physical address on the LAN for this MPDU.

Figure 7.3  IEEE 802.11 Protocol Stack

Logical Link
Control

Medium Access
Control

Physical

Encoding/decoding of signals
Bit transmission/reception
Transmission medium

Assemble data into frame
Addressing
Error detection
Medium access

Flow control
Error control

General IEEE 802
functions

Speci­c IEEE 802.11
functions

Frequency band de­nition
Wireless signal encoding

Reliable data delivery
Wireless access control protocols

M07_STAL4855_06_GE_C07.indd 232 8/9/16 9:15 PM

7.3 / IEEE 802.11 Wireless Lan Overview  233

■■ MAC Service Data Unit: The data from the next higher layer.

■■ CRC: The cyclic redundancy check field; also known as the Frame Check
Sequence (FCS) field. This is an error-detecting code, such as that which is
used in other data-link control protocols. The CRC is calculated based on the
bits in the entire MPDU. The sender calculates the CRC and adds it to the
frame. The receiver performs the same calculation on the incoming MPDU
and compares that calculation to the CRC field in that incoming MPDU. If
the two values don’t match, then one or more bits have been altered in transit.

The fields preceding the MSDU field are referred to as the MAC header, and
the field following the MSDU field is referred to as the MAC trailer. The header
and trailer contain control information that accompany the data field and that are
used by the MAC protocol.

Logical Link Control  In most data-link control protocols, the data-link protocol
entity is responsible not only for detecting errors using the CRC, but for recovering
from those errors by retransmitting damaged frames. In the LAN protocol archi-
tecture, these two functions are split between the MAC and LLC layers. The MAC
layer is responsible for detecting errors and discarding any frames that contain er-
rors. The LLC layer optionally keeps track of which frames have been successfully
received and retransmits unsuccessful frames.

IEEE 802.11 Network Components and Architectural Model

Figure 7.5 illustrates the model developed by the 802.11 working group. The small-
est building block of a wireless LAN is a basic service set (BSS), which consists of
wireless stations executing the same MAC protocol and competing for access to the
same shared wireless medium. A BSS may be isolated, or it may connect to a back-
bone distribution system (DS) through an access point (AP). The AP functions as a
bridge and a relay point. In a BSS, client stations do not communicate directly with
one another. Rather, if one station in the BSS wants to communicate with another
station in the same BSS, the MAC frame is first sent from the originating station to
the AP and then from the AP to the destination station. Similarly, a MAC frame
from a station in the BSS to a remote station is sent from the local station to the AP
and then relayed by the AP over the DS on its way to the destination station. The
BSS generally corresponds to what is referred to as a cell in the literature. The DS
can be a switch, a wired network, or a wireless network.

When all the stations in the BSS are mobile stations that communicate directly
with one another (not using an AP), the BSS is called an independent BSS (IBSS).
An IBSS is typically an ad hoc network. In an IBSS, the stations all communicate
directly, and no AP is involved.

Figure 7.4  General IEEE 802 MPDU Format

MAC
Control

reliart CAMredaeh CAM

Destination
MAC Address

Source
MAC Address MAC Service Data Unit (MSDU) CRC

M07_STAL4855_06_GE_C07.indd 233 8/9/16 9:15 PM

234   chapter 7 / Wireless Network Security

A simple configuration is shown in Figure 7.5, in which each station belongs
to a single BSS; that is, each station is within wireless range only of other stations
within the same BSS. It is also possible for two BSSs to overlap geographically, so
that a single station could participate in more than one BSS. Furthermore, the asso-
ciation between a station and a BSS is dynamic. Stations may turn off, come within
range, and go out of range.

An extended service set (ESS) consists of two or more basic service sets
interconnected by a distribution system. The extended service set appears as a sin-
gle logical LAN to the logical link control (LLC) level.

IEEE 802.11 Services

IEEE 802.11 defines nine services that need to be provided by the wireless LAN to
achieve functionality equivalent to that which is inherent to wired LANs. Table 7.2
lists the services and indicates two ways of categorizing them.

1.	 The service provider can be either the station or the DS. Station services are
implemented in every 802.11 station, including AP stations. Distribution ser-
vices are provided between BSSs; these services may be implemented in an AP
or in another special-purpose device attached to the distribution system.

2.	 Three of the services are used to control IEEE 802.11 LAN access and confi-
dentiality. Six of the services are used to support delivery of MSDUs between
stations. If the MSDU is too large to be transmitted in a single MPDU, it may
be fragmented and transmitted in a series of MPDUs.

Figure 7.5  IEEE 802.11 Extended Service Set

STA 2

STA 3

STA4

STA 1

STA 6 STA 7

STA 8

AP 2

AP 1

Basic Service
Set (BSS)

Basic Service
Set (BSS)

Distribution System

M07_STAL4855_06_GE_C07.indd 234 8/9/16 9:15 PM

7.3 / IEEE 802.11 Wireless Lan Overview  235

Following the IEEE 802.11 document, we next discuss the services in an order
designed to clarify the operation of an IEEE 802.11 ESS network. MSDU delivery,
which is the basic service, already has been mentioned. Services related to security
are introduced in Section 7.4.

Distribution of Messages Within a DS  The two services involved with the dis-
tribution of messages within a DS are distribution and integration. Distribution is
the primary service used by stations to exchange MPDUs when the MPDUs must
traverse the DS to get from a station in one BSS to a station in another BSS. For
example, suppose a frame is to be sent from station 2 (STA 2) to station 7 (STA 7)
in Figure 7.5. The frame is sent from STA 2 to AP 1, which is the AP for this BSS.
The AP gives the frame to the DS, which has the job of directing the frame to the
AP associated with STA 7 in the target BSS. AP 2 receives the frame and forwards
it to STA 7. How the message is transported through the DS is beyond the scope of
the IEEE 802.11 standard.

If the two stations that are communicating are within the same BSS, then the
distribution service logically goes through the single AP of that BSS.

The integration service enables transfer of data between a station on an IEEE
802.11 LAN and a station on an integrated IEEE 802.x LAN. The term integrated
refers to a wired LAN that is physically connected to the DS and whose stations
may be logically connected to an IEEE 802.11 LAN via the integration service. The
integration service takes care of any address translation and media conversion logic
required for the exchange of data.

Association-Related Services  The primary purpose of the MAC layer is to
transfer MSDUs between MAC entities; this purpose is fulfilled by the distribu-
tion service. For that service to function, it requires information about stations
within the ESS that is provided by the association-related services. Before the
distribution service can deliver data to or accept data from a station, that sta-
tion must be associated. Before looking at the concept of association, we need

Service Provider Used to support

Association Distribution system MSDU delivery

Authentication Station LAN access and security

Deauthentication Station LAN access and security

Disassociation Distribution system MSDU delivery

Distribution Distribution system MSDU delivery

Integration Distribution system MSDU delivery

MSDU delivery Station MSDU delivery

Privacy Station LAN access and security

Reassociation Distribution system MSDU delivery

Table 7.2  IEEE 802.11 Services

M07_STAL4855_06_GE_C07.indd 235 8/9/16 9:15 PM

236   chapter 7 / Wireless Network Security

to describe the concept of mobility. The standard defines three transition types,
based on mobility:

■■ No transition: A station of this type is either stationary or moves only within
the direct communication range of the communicating stations of a single BSS.

■■ BSS transition: This is defined as a station movement from one BSS to another
BSS within the same ESS. In this case, delivery of data to the station requires that
the addressing capability be able to recognize the new location of the station.

■■ ESS transition: This is defined as a station movement from a BSS in one ESS
to a BSS within another ESS. This case is supported only in the sense that
the station can move. Maintenance of upper-layer connections supported by
802.11 cannot be guaranteed. In fact, disruption of service is likely to occur.

To deliver a message within a DS, the distribution service needs to know where
the destination station is located. Specifically, the DS needs to know the identity of
the AP to which the message should be delivered in order for that message to reach
the destination station. To meet this requirement, a station must maintain an asso-
ciation with the AP within its current BSS. Three services relate to this requirement:

■■ Association: Establishes an initial association between a station and an AP.
Before a station can transmit or receive frames on a wireless LAN, its iden-
tity and address must be known. For this purpose, a station must establish an
association with an AP within a particular BSS. The AP can then communicate
this information to other APs within the ESS to facilitate routing and delivery
of addressed frames.

■■ Reassociation: Enables an established association to be transferred from one
AP to another, allowing a mobile station to move from one BSS to another.

■■ Disassociation: A notification from either a station or an AP that an existing
association is terminated. A station should give this notification before leaving
an ESS or shutting down. However, the MAC management facility protects
itself against stations that disappear without notification.

	 7.4	IEEE 802.11i Wireless Lan Security

There are two characteristics of a wired LAN that are not inherent in a wireless LAN.

1.	 In order to transmit over a wired LAN, a station must be physically connected
to the LAN. On the other hand, with a wireless LAN, any station within radio
range of the other devices on the LAN can transmit. In a sense, there is a form
of authentication with a wired LAN in that it requires some positive and pre-
sumably observable action to connect a station to a wired LAN.

2.	 Similarly, in order to receive a transmission from a station that is part of a
wired LAN, the receiving station also must be attached to the wired LAN.
On the other hand, with a wireless LAN, any station within radio range can
receive. Thus, a wired LAN provides a degree of privacy, limiting reception of
data to stations connected to the LAN.

M07_STAL4855_06_GE_C07.indd 236 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  237

These differences between wired and wireless LANs suggest the increased
need for robust security services and mechanisms for wireless LANs. The original
802.11 specification included a set of security features for privacy and authenti-
cation that were quite weak. For privacy, 802.11 defined the Wired Equivalent
Privacy (WEP) algorithm. The privacy portion of the 802.11 standard contained
major weaknesses. Subsequent to the development of WEP, the 802.11i task
group has developed a set of capabilities to address the WLAN security issues.
In order to accelerate the introduction of strong security into WLANs, the Wi-Fi
Alliance promulgated Wi-Fi Protected Access (WPA) as a Wi-Fi standard. WPA
is a set of security mechanisms that eliminates most 802.11 security issues and
was based on the current state of the 802.11i standard. The final form of the
802.11i standard is referred to as Robust Security Network (RSN). The Wi-Fi
Alliance certifies vendors in compliance with the full 802.11i specification under
the WPA2 program.

The RSN specification is quite complex, and occupies 145 pages of the 2012
IEEE 802.11 standard. In this section, we provide an overview.

IEEE 802.11i Services

The 802.11i RSN security specification defines the following services.

■■ Authentication: A protocol is used to define an exchange between a user and
an AS that provides mutual authentication and generates temporary keys to
be used between the client and the AP over the wireless link.

■■ Access control:1 This function enforces the use of the authentication function,
routes the messages properly, and facilitates key exchange. It can work with a
variety of authentication protocols.

■■ Privacy with message integrity: MAC-level data (e.g., an LLC PDU) are
encrypted along with a message integrity code that ensures that the data have
not been altered.

Figure 7.6a indicates the security protocols used to support these services,
while Figure 7.6b lists the cryptographic algorithms used for these services.

IEEE 802.11i Phases of Operation

The operation of an IEEE 802.11i RSN can be broken down into five distinct phases
of operation. The exact nature of the phases will depend on the configuration and
the end points of the communication. Possibilities include (see Figure 7.5):

1.	 Two wireless stations in the same BSS communicating via the access point
(AP) for that BSS.

2.	 Two wireless stations (STAs) in the same ad hoc IBSS communicating directly
with each other.

1In this context, we are discussing access control as a security function. This is a different function than
media access control (MAC) as described in Section 7.3. Unfortunately, the literature and the standards
use the term access control in both contexts.

M07_STAL4855_06_GE_C07.indd 237 8/9/16 9:15 PM

238   chapter 7 / Wireless Network Security

3.	 Two wireless stations in different BSSs communicating via their respective
APs across a distribution system.

4.	 A wireless station communicating with an end station on a wired network via
its AP and the distribution system.

IEEE 802.11i security is concerned only with secure communication between
the STA and its AP. In case 1 in the preceding list, secure communication is assured
if each STA establishes secure communications with the AP. Case 2 is similar, with
the AP functionality residing in the STA. For case 3, security is not provided across
the distribution system at the level of IEEE 802.11, but only within each BSS. End-
to-end security (if required) must be provided at a higher layer. Similarly, in case 4,
security is only provided between the STA and its AP.

Figure 7.6  Elements of IEEE 802.11i

Access Control
Se

rv
ic

es
P

ro
to

co
ls

Se
rv

ic
es

A
lg

or
ith

m
s

IEEE 802.1
Port-based

Access Control

Extensible
Authentication
Protocol (EAP)

Authentication
and Key

Generation

(a) Services and protocols

Con�dentiality, Data
Origin Authentication

and Integrity and
Replay Protection

TKIP CCMP

Robust Security Network (RSN)

Con�dentiality

TKIP
(Michael

MIC)

CCM
(AES-
CBC-
MAC)

CCM
(AES-
CTR)

NIST
Key

Wrap

HMAC-
MD5

HMAC-
SHA-1

Integrity and
Data Origin

Authentication

(b) Cryptographic algorithms

Key
Generation

TKIP
(RC4)

Robust Security Network (RSN)

HMAC-
SHA-1

RFC
1750

CBC-MAC = Cipher Block Chaining Message Authentication Code (MAC)
CCM = Counter Mode with Cipher Block Chaining Message Authentication Code
CCMP = Counter Mode with Cipher Block Chaining MAC Protocol
TKIP = Temporal Key Integrity Protocol

M07_STAL4855_06_GE_C07.indd 238 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  239

With these considerations in mind, Figure 7.7 depicts the five phases of op-
eration for an RSN and maps them to the network components involved. One new
component is the authentication server (AS). The rectangles indicate the exchange
of sequences of MPDUs. The five phases are defined as follows.

■■ Discovery: An AP uses messages called Beacons and Probe Responses to ad-
vertise its IEEE 802.11i security policy. The STA uses these to identify an AP
for a WLAN with which it wishes to communicate. The STA associates with
the AP, which it uses to select the cipher suite and authentication mechanism
when the Beacons and Probe Responses present a choice.

■■ Authentication: During this phase, the STA and AS prove their identities to
each other. The AP blocks non-authentication traffic between the STA and AS
until the authentication transaction is successful. The AP does not participate
in the authentication transaction other than forwarding traffic between the
STA and AS.

■■ Key generation and distribution: The AP and the STA perform several opera-
tions that cause cryptographic keys to be generated and placed on the AP and
the STA. Frames are exchanged between the AP and STA only.

■■ Protected data transfer: Frames are exchanged between the STA and the end
station through the AP. As denoted by the shading and the encryption module
icon, secure data transfer occurs between the STA and the AP only; security is
not provided end-to-end.

Figure 7.7  IEEE 802.11i Phases of Operation

Phase 1 - Discovery

STA AP AS End Station

Phase 5 - Connection Termination

Phase 3 - Key Management

Phase 4 - Protected Data Transfer

Phase 2 - Authentication

M07_STAL4855_06_GE_C07.indd 239 8/9/16 9:15 PM

240   chapter 7 / Wireless Network Security

■■ Connection termination: The AP and STA exchange frames. During this phase,
the secure connection is torn down and the connection is restored to the origi-
nal state.

Discovery Phase

We now look in more detail at the RSN phases of operation, beginning with the
discovery phase, which is illustrated in the upper portion of Figure 7.8. The purpose
of this phase is for an STA and an AP to recognize each other, agree on a set of
security capabilities, and establish an association for future communication using
those security capabilities.

Figure 7.8 � IEEE 802.11i Phases of Operation: Capability Discovery,
Authentication, and Association

STA AP AS

Probe requestStation sends a request
to join network AP sends possible

security parameter
(security capabilities set
per the security policy)

AP performs
null authentication

AP sends the associated
security parameters

Station sends a
request to perform

 null authentication

Station sends a request to
associate with AP with

security parameters

Station sets selected
security parameters

Open system
authentication request

Probe response

802.1X EAP request

Access request
(EAP request)

802.1X EAP response

Accept/EAP-success
key material

802.1X EAP success

Association request

Association response

 Open system
authentication response

802.1X-controlled port blocked

802.1X-controlled port blocked

Extensible Authentication Protocol Exchange

M07_STAL4855_06_GE_C07.indd 240 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  241

Security Capabilities  During this phase, the STA and AP decide on specific tech-
niques in the following areas:

■■ Confidentiality and MPDU integrity protocols for protecting unicast traffic
(traffic only between this STA and AP)

■■ Authentication method

■■ Cryptography key management approach

Confidentiality and integrity protocols for protecting multicast/broadcast traf-
fic are dictated by the AP, since all STAs in a multicast group must use the same
protocols and ciphers. The specification of a protocol, along with the chosen key
length (if variable) is known as a cipher suite. The options for the confidentiality and
integrity cipher suite are

■■ WEP, with either a 40-bit or 104-bit key, which allows backward compatibility
with older IEEE 802.11 implementations

■■ TKIP

■■ CCMP

■■ Vendor-specific methods

The other negotiable suite is the authentication and key management (AKM)
suite, which defines (1) the means by which the AP and STA perform mutual au-
thentication and (2) the means for deriving a root key from which other keys may
be generated. The possible AKM suites are

■■ IEEE 802.1X

■■ Pre-shared key (no explicit authentication takes place and mutual authentica-
tion is implied if the STA and AP share a unique secret key)

■■ Vendor-specific methods

MPDU Exchange  The discovery phase consists of three exchanges.

■■ Network and security capability discovery: During this exchange, STAs dis-
cover the existence of a network with which to communicate. The AP either
periodically broadcasts its security capabilities (not shown in figure), indicated
by RSN IE (Robust Security Network Information Element), in a specific
channel through the Beacon frame; or responds to a station’s Probe Request
through a Probe Response frame. A wireless station may discover available
access points and corresponding security capabilities by either passively moni-
toring the Beacon frames or actively probing every channel.

■■ Open system authentication: The purpose of this frame sequence, which pro-
vides no security, is simply to maintain backward compatibility with the IEEE
802.11 state machine, as implemented in existing IEEE 802.11 hardware. In
essence, the two devices (STA and AP) simply exchange identifiers.

■■ Association: The purpose of this stage is to agree on a set of security capa-
bilities to be used. The STA then sends an Association Request frame to
the AP. In this frame, the STA specifies one set of matching capabilities

M07_STAL4855_06_GE_C07.indd 241 8/9/16 9:15 PM

242   chapter 7 / Wireless Network Security

(one authentication and key management suite, one pairwise cipher suite,
and one group-key cipher suite) from among those advertised by the AP.
If there is no match in capabilities between the AP and the STA, the AP
refuses the Association Request. The STA blocks it too, in case it has associ-
ated with a rogue AP or someone is inserting frames illicitly on its channel.
As shown in Figure 7.8, the IEEE 802.1X controlled ports are blocked, and
no user traffic goes beyond the AP. The concept of blocked ports is explained
subsequently.

Authentication Phase

As was mentioned, the authentication phase enables mutual authentication between
an STA and an authentication server (AS) located in the DS. Authentication is
designed to allow only authorized stations to use the network and to provide the
STA with assurance that it is communicating with a legitimate network.

IEEE 802.1X Access Control Approach  IEEE 802.11i makes use of another stan-
dard that was designed to provide access control functions for LANs. The standard
is IEEE 802.1X, Port-Based Network Access Control. The authentication proto-
col that is used, the Extensible Authentication Protocol (EAP), is defined in the
IEEE 802.1X standard. IEEE 802.1X uses the terms supplicant, authenticator, and
authentication server (AS). In the context of an 802.11 WLAN, the first two terms
correspond to the wireless station and the AP. The AS is typically a separate device
on the wired side of the network (i.e., accessible over the DS) but could also reside
directly on the authenticator.

Before a supplicant is authenticated by the AS using an authentication proto-
col, the authenticator only passes control or authentication messages between the
supplicant and the AS; the 802.1X control channel is unblocked, but the 802.11 data
channel is blocked. Once a supplicant is authenticated and keys are provided, the
authenticator can forward data from the supplicant, subject to predefined access
control limitations for the supplicant to the network. Under these circumstances,
the data channel is unblocked.

As indicated in Figure 5.5, 802.1X uses the concepts of controlled and uncon-
trolled ports. Ports are logical entities defined within the authenticator and refer to
physical network connections. For a WLAN, the authenticator (the AP) may have
only two physical ports: one connecting to the DS and one for wireless communica-
tion within its BSS. Each logical port is mapped to one of these two physical ports.
An uncontrolled port allows the exchange of PDUs between the supplicant and the
other AS, regardless of the authentication state of the supplicant. A controlled port
allows the exchange of PDUs between a supplicant and other systems on the LAN
only if the current state of the supplicant authorizes such an exchange. IEEE 802.1X
is covered in more detail in Chapter 5.

The 802.1X framework, with an upper-layer authentication protocol, fits
nicely with a BSS architecture that includes a number of wireless stations and an
AP. However, for an IBSS, there is no AP. For an IBSS, 802.11i provides a more
complex solution that, in essence, involves pairwise authentication between stations
on the IBSS.

M07_STAL4855_06_GE_C07.indd 242 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  243

MPDU Exchange  The lower part of Figure 7.8 shows the MPDU exchange dic-
tated by IEEE 802.11 for the authentication phase. We can think of authentication
phase as consisting of the following three phases.

■■ Connect to AS: The STA sends a request to its AP (the one with which it has
an association) for connection to the AS. The AP acknowledges this request
and sends an access request to the AS.

■■ EAP exchange: This exchange authenticates the STA and AS to each other.
A number of alternative exchanges are possible, as explained subsequently.

■■ Secure key delivery: Once authentication is established, the AS generates a
master session key (MSK), also known as the Authentication, Authorization,
and Accounting (AAA) key and sends it to the STA. As explained subse-
quently, all the cryptographic keys needed by the STA for secure communica-
tion with its AP are generated from this MSK. IEEE 802.11i does not prescribe
a method for secure delivery of the MSK but relies on EAP for this. Whatever
method is used, it involves the transmission of an MPDU containing an en-
crypted MSK from the AS, via the AP, to the AS.

EAP Exchange  As mentioned, there are a number of possible EAP exchanges that
can be used during the authentication phase. Typically, the message flow between
STA and AP employs the EAP over LAN (EAPOL) protocol, and the message
flow between the AP and AS uses the Remote Authentication Dial In User Service
(RADIUS) protocol, although other options are available for both STA-to-AP and
AP-to-AS exchanges. [FRAN07] provides the following summary of the authenti-
cation exchange using EAPOL and RADIUS.

1.	 The EAP exchange begins with the AP issuing an EAP-Request/Identity
frame to the STA.

2.	 The STA replies with an EAP-Response/Identity frame, which the AP receives
over the uncontrolled port. The packet is then encapsulated in RADIUS over
EAP and passed on to the RADIUS server as a RADIUS-Access-Request
packet.

3.	 The AAA server replies with a RADIUS-Access-Challenge packet, which is
passed on to the STA as an EAP-Request. This request is of the appropriate
authentication type and contains relevant challenge information.

4.	 The STA formulates an EAP-Response message and sends it to the AS. The
response is translated by the AP into a Radius-Access-Request with the re-
sponse to the challenge as a data field. Steps 3 and 4 may be repeated multiple
times, depending on the EAP method in use. For TLS tunneling methods, it is
common for authentication to require 10 to 20 round trips.

5.	 The AAA server grants access with a Radius-Access-Accept packet. The AP
issues an EAP-Success frame. (Some protocols require confirmation of the
EAP success inside the TLS tunnel for authenticity validation.) The controlled
port is authorized, and the user may begin to access the network.

Note from Figure 7.8 that the AP controlled port is still blocked to general
user traffic. Although the authentication is successful, the ports remain blocked

M07_STAL4855_06_GE_C07.indd 243 8/9/16 9:15 PM

244   chapter 7 / Wireless Network Security

until the temporal keys are installed in the STA and AP, which occurs during the
4-Way Handshake.

Key Management Phase

During the key management phase, a variety of cryptographic keys are generated
and distributed to STAs. There are two types of keys: pairwise keys used for com-
munication between an STA and an AP and group keys used for multicast com-
munication. Figure 7.9, based on [FRAN07], shows the two key hierarchies, and
Table 7.3 defines the individual keys.

Figure 7.9  IEEE 802.11i Key Hierarchies

Out-of-band path EAP method path

Pre-shared key

EAPOL key con�rmation key EAPOL key encryption key Temporal key

PSK

256 bits

384 bits (CCMP)
512 bits (TKIP)

128 bits (CCMP)
256 bits (TKIP)

40 bits, 104 bits (WEP)
128 bits (CCMP)
256 bits (TKIP)

256 bits

128 bits

No modi�cation
Legend

Possible truncation
PRF (pseudo random
function) using
HMAC-SHA-1

128 bits

User-de�ned
cryptoid

EAP
authentication

Following EAP authentication
or PSK

During 4-way handshake

These keys are
components of the PTK

≥ 256 bits

PMK

KCK

PTK

KTKEK

AAAK or MSK

Pairwise master key

(b) Group key hierarchy

(a) Pairwise key hierarchy

AAA key

Pairwise transient key

256 bits Changes periodically
or if compromised

Changes based on
policy (dissociation,
deauthentication)

GMK (generated by AS)

GTK

Group master key

Group temporal key

M07_STAL4855_06_GE_C07.indd 244 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  245

Abbreviation Name Description / Purpose Size (bits) Type

AAA Key Authentication,
Accounting, and
Authorization Key

Used to derive the PMK.
Used with the IEEE
802.1X authentication
and key management
approach. Same as
MMSK.

Ú 256 Key generation key,
root key

PSK Pre-shared Key Becomes the PMK
in pre-shared key
environments.

256 Key generation key,
root key

PMK Pairwise Master Key Used with other inputs to
derive the PTK.

256 Key generation key

GMK Group Master Key Used with other inputs to
derive the GTK.

128 Key generation key

PTK Pair-wise Transient
Key

Derived from the PMK.
Comprises the EAPOL-
KCK, EAPOL-KEK, and
TK and (for TKIP) the
MIC key.

512 (TKIP)
384 (CCMP)

Composite key

TK Temporal Key Used with TKIP or
CCMP to provide
confidentiality and
integrity protection for
unicast user traffic.

256 (TKIP)
128 (CCMP)

Traffic key

GTK Group Temporal Key Derived from the
GMK. Used to provide
confidentiality and
integrity protection for
multicast/broadcast user
traffic.

256 (TKIP)
128 (CCMP)

40,104 (WEP)

Traffic key

MIC Key Message Integrity
Code Key

Used by TKIP’s Michael
MIC to provide integrity
protection of messages.

64 Message integrity key

EAPOL-KCK EAPOL-Key
Confirmation Key

Used to provide integrity
protection for key
material distributed
during the 4-Way
Handshake.

128 Message integrity key

EAPOL-KEK EAPOL-Key
Encryption Key

Used to ensure the
confidentiality of the
GTK and other key
material in the 4-Way
Handshake.

128 Traffic key / key
encryption key

WEP Key Wired Equivalent
Privacy Key

Used with WEP. 40,104 Traffic key

Table 7.3  IEEE 802.11i Keys for Data Confidentiality and Integrity Protocols

M07_STAL4855_06_GE_C07.indd 245 8/9/16 9:15 PM

246   chapter 7 / Wireless Network Security

Pairwise Keys  Pairwise keys are used for communication between a pair of devices,
typically between an STA and an AP. These keys form a hierarchy beginning with
a master key from which other keys are derived dynamically and used for a limited
period of time.

At the top level of the hierarchy are two possibilities. A pre-shared key (PSK)
is a secret key shared by the AP and a STA and installed in some fashion outside
the scope of IEEE 802.11i. The other alternative is the master session key (MSK),
also known as the AAAK, which is generated using the IEEE 802.1X protocol dur-
ing the authentication phase, as described previously. The actual method of key
generation depends on the details of the authentication protocol used. In either case
(PSK or MSK), there is a unique key shared by the AP with each STA with which
it communicates. All the other keys derived from this master key are also unique
between an AP and an STA. Thus, each STA, at any time, has one set of keys, as
depicted in the hierarchy of Figure 7.9a, while the AP has one set of such keys for
each of its STAs.

The pairwise master key (PMK) is derived from the master key. If a PSK is
used, then the PSK is used as the PMK; if a MSK is used, then the PMK is derived
from the MSK by truncation (if necessary). By the end of the authentication phase,
marked by the 802.1X EAP Success message (Figure 7.8), both the AP and the STA
have a copy of their shared PMK.

The PMK is used to generate the pairwise transient key (PTK), which in fact
consists of three keys to be used for communication between an STA and AP after
they have been mutually authenticated. To derive the PTK, the HMAC-SHA-1
function is applied to the PMK, the MAC addresses of the STA and AP, and nonces
generated when needed. Using the STA and AP addresses in the generation of the
PTK provides protection against session hijacking and impersonation; using nonces
provides additional random keying material.

The three parts of the PTK are as follows.

■■ EAP Over LAN (EAPOL) Key Confirmation Key (EAPOL-KCK): Supports
the integrity and data origin authenticity of STA-to-AP control frames during
operational setup of an RSN. It also performs an access control function:
proof-of-possession of the PMK. An entity that possesses the PMK is autho-
rized to use the link.

■■ EAPOL Key Encryption Key (EAPOL-KEK): Protects the confidentiality of
keys and other data during some RSN association procedures.

■■ Temporal Key (TK): Provides the actual protection for user traffic.

Group Keys  Group keys are used for multicast communication in which one STA
sends MPDU’s to multiple STAs. At the top level of the group key hierarchy is
the group master key (GMK). The GMK is a key-generating key used with other
inputs to derive the group temporal key (GTK). Unlike the PTK, which is gener-
ated using material from both AP and STA, the GTK is generated by the AP and
transmitted to its associated STAs. Exactly how this GTK is generated is unde-
fined. IEEE 802.11i, however, requires that its value is computationally indistin-
guishable from random. The GTK is distributed securely using the pairwise keys

M07_STAL4855_06_GE_C07.indd 246 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  247

that are already established. The GTK is changed every time a device leaves the
network.

Pairwise Key Distribution  The upper part of Figure 7.10 shows the MPDU
exchange for distributing pairwise keys. This exchange is known as the 4-way
handshake. The STA and AP use this handshake to confirm the existence of the

Figure 7.10  IEEE 802.11i Phases of Operation: 4-Way Handshake and Group Key Handshake

STA AP

Message 1 delivers a nonce to
the STA so that it can generate
the PTK.

Message 1 delivers a new GTK to
the STA. The GTK is encrypted
before it is sent and the entire
message is integrity protected.

The AP installs the GTK.

Message 3 demonstrates to
the STA that the authenticator
is alive, ensures that the PTK is
fresh (new) and that there is no
man-in-the-middle.

Message 2 delivers another nonce to the
AP so that it can also generate the
PTK. It demonstrates to the AP that
the STA is alive, ensures that the
PTK is fresh (new) and that there is no
man-in-the-middle.

The STA decrypts the GTK
and installs it for use.

Message 2 is delivered to the
AP. This frame serves only as
an acknowledgment to the AP.

Message 4 serves as an acknowledgment to
Message 3. It serves no cryptographic
function. This message also ensures the
reliable start of the group key handshake.

Message 2
EAPOL-key (Snonce,

Unicast, MIC)

Message 1
EAPOL-key (Anonce, Unicast)

Message 1
EAPOL-key (GTK, MIC)

Message 4
EAPOL-key (Unicast, MIC)

Message 2
EAPOL-key (MIC)

Message 3
EAPOL-key (Install PTK,

Unicast, MIC)

AP’s 802.1X-controlled port blocked

AP’s 802.1X-controlled port
 unblocked for unicast tra�c

M07_STAL4855_06_GE_C07.indd 247 8/9/16 9:15 PM

248   chapter 7 / Wireless Network Security

PMK, verify the selection of the cipher suite, and derive a fresh PTK for the follow-
ing data session. The four parts of the exchange are as follows.

■■ AP S STA: Message includes the MAC address of the AP and a nonce
(Anonce).

■■ STA S AP: The STA generates its own nonce (Snonce) and uses both nonces
and both MAC addresses, plus the PMK, to generate a PTK. The STA then
sends a message containing its MAC address and Snonce, enabling the AP to
generate the same PTK. This message includes a message integrity code
(MIC)2 using HMAC-MD5 or HMAC-SHA-1-128. The key used with the MIC
is KCK.

■■ AP S STA: The AP is now able to generate the PTK. The AP then sends a
message to the STA, containing the same information as in the first message,
but this time including a MIC.

■■ STA S AP: This is merely an acknowledgment message, again protected by
a MIC.

Group Key Distribution  For group key distribution, the AP generates a GTK and
distributes it to each STA in a multicast group. The two-message exchange with
each STA consists of the following:

■■ AP S STA: This message includes the GTK, encrypted either with RC4 or
with AES. The key used for encryption is KEK. A MIC value is appended.

■■ STA S AP: The STA acknowledges receipt of the GTK. This message includes
a MIC value.

Protected Data Transfer Phase

IEEE 802.11i defines two schemes for protecting data transmitted in 802.11 MPDUs:
the Temporal Key Integrity Protocol (TKIP), and the Counter Mode-CBC MAC
Protocol (CCMP).

TKIP  TKIP is designed to require only software changes to devices that are imple-
mented with the older wireless LAN security approach called Wired Equivalent
Privacy (WEP). TKIP provides two services:

■■ Message integrity: TKIP adds a message integrity code (MIC) to the 802.11
MAC frame after the data field. The MIC is generated by an algorithm, called
Michael, that computes a 64-bit value using as input the source and destination
MAC address values and the Data field, plus key material.

■■ Data confidentiality: Data confidentiality is provided by encrypting the
MPDU plus MIC value using RC4.

2 While MAC is commonly used in cryptography to refer to a Message Authentication Code, the term
MIC is used instead in connection with 802.11i because MAC has another standard meaning, Media
Access Control, in networking.

M07_STAL4855_06_GE_C07.indd 248 8/9/16 9:15 PM

7.4 / IEEE 802.11i Wireless Lan Security  249

The 256-bit TK (Figure 7.9) is employed as follows. Two 64-bit keys are used
with the Michael message digest algorithm to produce a message integrity code.
One key is used to protect STA-to-AP messages, and the other key is used to pro-
tect AP-to-STA messages. The remaining 128 bits are truncated to generate the
RC4 key used to encrypt the transmitted data.

For additional protection, a monotonically increasing TKIP sequence coun-
ter (TSC) is assigned to each frame. The TSC serves two purposes. First, the
TSC is included with each MPDU and is protected by the MIC to protect against
replay attacks. Second, the TSC is combined with the session TK to produce a
dynamic encryption key that changes with each transmitted MPDU, thus making
cryptanalysis more difficult.

CCMP  CCMP is intended for newer IEEE 802.11 devices that are equipped with
the hardware to support this scheme. As with TKIP, CCMP provides two services:

■■ Message integrity: CCMP uses the cipher block chaining message authentica-
tion code (CBC-MAC), described in Chapter 3.

■■ Data confidentiality: CCMP uses the CTR block cipher mode of operation
with AES for encryption. CTR is described in Chapter 2.

The same 128-bit AES key is used for both integrity and confidentiality. The
scheme uses a 48-bit packet number to construct a nonce to prevent replay attacks.

The IEEE 802.11i Pseudorandom Function

At a number of places in the IEEE 802.11i scheme, a pseudorandom function (PRF) is
used. For example, it is used to generate nonces, to expand pairwise keys, and to gen-
erate the GTK. Best security practice dictates that different pseudorandom number
streams be used for these different purposes. However, for implementation efficiency,
we would like to rely on a single pseudorandom number generator function.

The PRF is built on the use of HMAC-SHA-1 to generate a pseudorandom
bit stream. Recall that HMAC-SHA-1 takes a message (block of data) and a key of
length at least 160 bits and produces a 160-bit hash value. SHA-1 has the property
that the change of a single bit of the input produces a new hash value with no appar-
ent connection to the preceding hash value. This property is the basis for pseudo-
random number generation.

The IEEE 802.11i PRF takes four parameters as input and produces the desired
number of random bits. The function is of the form PRF(K, A, B, Len), where

K = a secret key

A = a text string specific to the application (e.g., nonce generation or pairwise
key expansion)

B = some data specific to each case
Len = desired number of pseudorandom bits

For example, for the pairwise transient key for CCMP:

PTK = PRF (PMK, “Pairwise key expansion”, min (AP-
Addr, STA-Addr) || max (AP-Addr, STA-Addr) || min
(Anonce, Snonce) || max (Anonce, Snonce), 384)

M07_STAL4855_06_GE_C07.indd 249 8/9/16 9:15 PM

250   chapter 7 / Wireless Network Security

So, in this case, the parameters are

K = PMK

A = the text string “Pairwise key expansion”

B = a sequence of bytes formed by concatenating the two MAC addresses
and the two nonces

Len = 384 bits

Similarly, a nonce is generated by

Nonce = PRF (Random Number, “InitCounter”, MAC || Time, 256)

where Time is a measure of the network time known to the nonce generator.
The group temporal key is generated by

GTK = PRF (GMK, “Group key expansion”, MAC || Gnonce, 256)

Figure 7.11 illustrates the function PRF(K, A, B, Len). The parameter K
serves as the key input to HMAC. The message input consists of four items concat-
enated together: the parameter A, a byte with value 0, the parameter B, and a coun-
ter i. The counter is initialized to 0. The HMAC algorithm is run once, producing
a 160-bit hash value. If more bits are required, HMAC is run again with the same
inputs, except that i is incremented each time until the necessary number of bits is
generated. We can express the logic as

PRF (K, A, B, Len)
 R

S

 null string
 for i

S

 0 to ((Len + 159)/160 − 1) do
 R

S

 R || HMAC-SHA-1 (K, A || 0 || B || i)
 Return Truncate-to-Len (R, Len)

Figure 7.11  IEEE 802.11i Pseudorandom Function

HMAC-SHA-1

| |

K

A 0 B i

R = HMAC-SHA-1(K, A || 0 || B || i)

+ 1

M07_STAL4855_06_GE_C07.indd 250 8/9/16 9:15 PM

7.5 / Key Terms, Review Questions, And Problems  251

	 7.5	 Key Terms, Review Questions, And Problems

Key Terms

4-way handshake
access point (AP)
basic service set (BSS)
Counter Mode-CBC MAC

Protocol (CCMP)
distribution system (DS)
extended service set (ESS)
group keys
IEEE 802.1X
IEEE 802.11
IEEE 802.11i

independent BSS (IBSS)
logical link control (LLC)
media access control (MAC)
MAC protocol data unit

(MPDU)
MAC service data unit

(MSDU)
message integrity code

(MIC)
Michael
pairwise keys

pseudorandom function
Robust Security Network

(RSN)
Temporal Key Integrity

Protocol (TKIP)
Wi-Fi
Wi-Fi Protected Access

(WPA)
Wired Equivalent Privacy

(WEP)
Wireless LAN (WLAN)

Review Questions

	 7.1	 What is the basic building block of an 802.11 WLAN?
	 7.2	 List and briefly define threats to a wireless network.
	 7.3	 List and briefly define IEEE 802.11 services.
	 7.4	 List some security threats related to mobile devices.
	 7.5	 How is the concept of an association related to that of mobility?
	 7.6	 What security areas are addressed by IEEE 802.11i?
	 7.7	 Briefly describe the five IEEE 802.11i phases of operation.
	 7.8	 What is the difference between TKIP and CCMP?

Problems

	 7.1	 In IEEE 802.11, open system authentication simply consists of two communications.
An authentication is requested by the client, which contains the station ID (typically
the MAC address). This is followed by an authentication response from the AP/router
containing a success or failure message. An example of when a failure may occur is if
the client’s MAC address is explicitly excluded in the AP/router configuration.
a.	 What are the benefits of this authentication scheme?
b.	 What are the security vulnerabilities of this authentication scheme?

	 7.2	 Prior to the introduction of IEEE 802.11i, the security scheme for IEEE 802.11 was
Wired Equivalent Privacy (WEP). WEP assumed all devices in the network share a
secret key. The purpose of the authentication scenario is for the STA to prove that
it possesses the secret key. Authentication proceeds as shown in Figure 7.12. The
STA sends a message to the AP requesting authentication. The AP issues a chal-
lenge, which is a sequence of 128 random bytes sent as plaintext. The STA encrypts
the challenge with the shared key and returns it to the AP. The AP decrypts the
incoming value and compares it to the challenge that it sent. If there is a match, the
AP confirms that authentication has succeeded.
a.	 What are the benefits of this authentication scheme?
b.	 This authentication scheme is incomplete. What is missing and why is this impor-

tant? Hint: The addition of one or two messages would fix the problem.
c.	 What is a cryptographic weakness of this scheme?

M07_STAL4855_06_GE_C07.indd 251 8/9/16 9:15 PM

252   chapter 7 / Wireless Network Security

	 7.3	 For WEP, data integrity and data confidentiality are achieved using the RC4 stream
encryption algorithm. The transmitter of an MPDU performs the following steps,
referred to as encapsulation:
1.	 The transmitter selects an initial vector (IV) value.
2.	 The IV value is concatenated with the WEP key shared by transmitter and receiver

to form the seed, or key input, to RC4.
3.	 A 32-bit cyclic redundancy check (CRC) is computed over all the bits of the MAC

data field and appended to the data field. The CRC is a common error-detection
code used in data link control protocols. In this case, the CRC serves as a integrity
check value (ICV).

4.	 The result of step 3 is encrypted using RC4 to form the ciphertext block.
5.	 The plaintext IV is prepended to the ciphertext block to form the encapsulated

MPDU for transmission.
a.	 Draw a block diagram that illustrates the encapsulation process.
b.	 Describe the steps at the receiver end to recover the plaintext and perform the

integrity check.
c.	 Draw a block diagram that illustrates part b.

	 7.4	 A potential weakness of the CRC as an integrity check is that it is a linear function.
This means that you can predict which bits of the CRC are changed if a single bit of
the message is changed. Furthermore, it is possible to determine which combination
of bits could be flipped in the message so that the net result is no change in the CRC.
Thus, there are a number of combinations of bit flippings of the plaintext message
that leave the CRC unchanged, so message integrity is defeated. However, in WEP,
if an attacker does not know the encryption key, the attacker does not have access to
the plaintext, only to the ciphertext block. Does this mean that the ICV is protected
from the bit flipping attack? Explain.

Figure 7.12  WEP Authentication; refer to Problem 7.2

STA AP

RequestStation sends a request
for authentication

AP sends challenge message
containing 128-bit random
number

AP decrypts challenge response.
If match, send authentication
success message

Station responds
with encrypted version

of challenge number

Response

Challenge

 Success

M07_STAL4855_06_GE_C07.indd 252 8/9/16 9:15 PM

253

8.1	 Internet Mail Architecture

8.2	 E-mail Formats

8.3	 E-mail Threats and Comprehensive E-mail Security

8.4	 S/MIME

8.5	 Pretty Good Privacy

8.6	 DNSSEC

8.7	 Dns-Based Authentication of Named Entities

8.8	 Sender Policy Framework

8.9	 DomainKeys Identified Mail

8.10	 Domain-Based Message Authentication, Reporting, and Conformance

8.11	 Key Terms, Review Questions, and Problems

Chapter

Electronic Mail Security

M08_STAL4855_06_GE_C08.indd 253 8/9/16 9:20 PM

254   chapter 8 / Electronic Mail Security

	 8.1	 Internet Mail Architecture

For an understanding of the topics in this chapter, it is useful to have a basic grasp of
the Internet mail architecture, which is currently defined in RFC 5598 (Internet Mail
Architecture, July 2009). This section provides an overview of the basic concepts.

E-mail Components

At its most fundamental level, the Internet mail architecture consists of a user world
in the form of Message User Agents (MUA), and the transfer world, in the form
of the Message Handling Service (MHS), which is composed of Message Transfer
Agents (MTA). The MHS accepts a message from one user and delivers it to one
or more other users, creating a virtual MUA-to-MUA exchange environment. This
architecture involves three types of interoperability. One is directly between users:
messages must be formatted by the MUA on behalf of the message author so that

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Summarize the key functional components of the Internet mail architecture.

◆◆ Explain the basic functionality of SMTP, POP3, and IMAP.

◆◆ Explain the need for MIME as an enhancement to ordinary e-mail.

◆◆ Describe the key elements of MIME.

◆◆ Understand the functionality of S/MIME and the security threats it addresses.

◆◆ Understand the basic mechanisms of STARTTLS and its role in e-mail
security.

◆◆ Understand the basic mechanisms of DANE and its role in e-mail security.

◆◆ Understand the basic mechanisms of SPF and its role in e-mail security.

◆◆ Understand the basic mechanisms of DKIM and its role in e-mail security.

◆◆ Understand the basic mechanisms of DMARC and its role in e-mail security.

In virtually all distributed environments, electronic mail is the most heavily used
network-based application. Users expect to be able to, and do, send e-mail to oth-
ers who are connected directly or indirectly to the Internet, regardless of host operat-
ing system or communications suite. With the explosively growing reliance on e-mail,
there grows a demand for authentication and confidentiality services. Two schemes
stand out as approaches that enjoy widespread use: Pretty Good Privacy (PGP) and
S/MIME. Both are examined in this chapter. This chapter concludes with a discussion
of DomainKeys Identified Mail.

M08_STAL4855_06_GE_C08.indd 254 8/9/16 9:20 PM

8.1 / Internet Mail Architecture  255

the message can be displayed to the message recipient by the destination MUA.
There are also interoperability requirements between the MUA and the MHS—
first when a message is posted from an MUA to the MHS and later when it is deliv-
ered from the MHS to the destination MUA. Interoperability is required among the
MTA components along the transfer path through the MHS.

Figure 8.1 illustrates the key components of the Internet mail architecture,
which include the following.

■■ Message User Agent (MUA): Operates on behalf of user actors and user
applications. It is their representative within the e-mail service. Typically, this
function is housed in the user’s computer and is referred to as a client e-mail
program or a local network e-mail server. The author MUA formats a message
and performs initial submission into the MHS via a MSA. The recipient MUA
processes received mail for storage and/or display to the recipient user.

■■ Mail Submission Agent (MSA): Accepts the message submitted by an MUA
and enforces the policies of the hosting domain and the requirements of
Internet standards. This function may be located together with the MUA or

Figure 8.1 � Function Modules and Standardized Protocols Used between them
in the Internet Mail Architecture

Message user
agent (MUA)

Message
author

Message
recipient

ESMTP
(Submission)

SMTP

SMTP SMTP

ESMTP
(Submission)

(SMTP,
local)

(IMAP, POP,
local)

Mail submission
agent (MSA)

Message transfer
agent (MTA)

Message transfer
agent (MTA)

MESSAGE HANDLING
SYSTEM (MHS)

Message transfer
agent (MTA)

Mail delivery
agent (MDA)

Message store
(MS)

Message user
agent (MUA)

M08_STAL4855_06_GE_C08.indd 255 8/9/16 9:20 PM

256   chapter 8 / Electronic Mail Security

as a separate functional model. In the latter case, the Simple Mail Transfer
Protocol (SMTP) is used between the MUA and the MSA.

■■ Message Transfer Agent (MTA): Relays mail for one application-level hop. It
is like a packet switch or IP router in that its job is to make routing assessments
and to move the message closer to the recipients. Relaying is performed by a
sequence of MTAs until the message reaches a destination MDA. An MTA
also adds trace information to the message header. SMTP is used between
MTAs and between an MTA and an MSA or MDA.

■■ Mail Delivery Agent (MDA): Responsible for transferring the message from
the MHS to the MS.

■■ Message Store (MS): An MUA can employ a long-term MS. An MS can be
located on a remote server or on the same machine as the MUA. Typically,
an MUA retrieves messages from a remote server using POP (Post Office
Protocol) or IMAP (Internet Message Access Protocol).

Two other concepts need to be defined. An administrative management
domain (ADMD) is an Internet e-mail provider. Examples include a department
that operates a local mail relay (MTA), an IT department that operates an enterprise
mail relay, and an ISP that operates a public shared e-mail service. Each ADMD
can have different operating policies and trust-based decision making. One obvi-
ous example is the distinction between mail that is exchanged within an organiza-
tion and mail that is exchanged between independent organizations. The rules for
handling the two types of traffic tend to be quite different.

The Domain Name System (DNS) is a directory lookup service that provides
a mapping between the name of a host on the Internet and its numerical address.
DNS is discussed subsequently in this chapter.

E-mail Protocols

Two types of protocols are used for transferring e-mail. The first type is used to
move messages through the Internet from source to destination. The protocol used
for this purpose is SMTP, with various extensions and in some cases restrictions. The
second type consists of protocols used to transfer messages between mail servers, of
which IMAP and POP are the most commonly used.

Simple Mail Transfer Protocol  SMTP encapsulates an e-mail message in an
envelope and is used to relay the encapsulated messages from source to destination
through multiple MTAs. SMTP was originally specified in 1982 as RFC 821 and
has undergone several revisions, the most current being RFC 5321 (October 2008).
These revisions have added additional commands and introduced extensions. The
term Extended SMTP (ESMTP) is often used to refer to these later versions of
SMTP.

SMTP is a text-based client-server protocol where the client (e-mail sender)
contacts the server (next-hop recipient) and issues a set of commands to tell the
server about the message to be sent, then sending the message itself. The majority
of these commands are ASCII text messages sent by the client and a resulting return
code (and additional ASCII text) returned by the server.

M08_STAL4855_06_GE_C08.indd 256 8/9/16 9:20 PM

8.1 / Internet Mail Architecture  257

The transfer of a message from a source to its ultimate destination can occur
over a single SMTP client/server conversation over a single TCP connection.
Alternatively, an SMTP server may be an intermediate relay that assumes the role
of an SMTP client after receiving a message and then forwards that message to an
SMTP server along a route to the ultimate destination.

The operation of SMTP consists of a series of commands and responses
exchanged between the SMTP sender and receiver. The initiative is with the SMTP
sender, who establishes the TCP connection. Once the connection is established,
the SMTP sender sends commands over the connection to the receiver. Each com-
mand consists of a single line of text, beginning with a four-letter command code
followed in some cases by an argument field. Each command generates exactly one
reply from the SMTP receiver. Most replies are a single-line, although multiple-line
replies are possible. Each reply begins with a three-digit code and may be followed
by additional information.

Figure 8.2 illustrates the SMTP exchange between a client (C) and server (S).
The interchange begins with the client establishing a TCP connection to TCP port
25 on the server (not shown in figure). This causes the server to activate SMTP
and send a 220 reply to the client. The HELO command identifies the sending
domain, which the server acknowledges and accepts with a 250 reply. The SMTP
sender is transmitting mail that originates with the user Smith@bar.com. The MAIL
command identifies the originator of the message. The message is addressed to
three users on machine foo.com, namely, Jones, Green, and Brown. The client

S: 220 foo.com Simple Mail Transfer Service Ready

C: HELO bar.com

S: 250 OK

C: MAIL FROM:<Smith@bar.com>

S: 250 OK

C: RCPT TO:<Jones@foo.com>

S: 250 OK

C: RCPT TO:<Green@foo.com>

S: 550 No such user here

C: RCPT TO:<Brown@foo.com>

S: 250 OK

C: DATA

S: 354 Start mail input; end with <crlf>.<crlf>

C: Blah blah blah . . .

C: . . . etc. etc. etc.

C: <crlf><crlf>

S: 250 OK

C: QUIT

S: 221 foo.com Service closing transmission channel

Figure 8.2  Example SMTP Transaction Scenario

M08_STAL4855_06_GE_C08.indd 257 8/9/16 9:20 PM

mailto:Smith@bar.com
mailto:Smith@bar.com
mailto:Jones@foo.com
mailto:Green@foo.com
mailto:Brown@foo.com
http://foo.com
http://foo.com
http://bar.com
http://foo.com

258   chapter 8 / Electronic Mail Security

identifies each of these in a separate RCPT command. The SMTP receiver indicates
that it has mailboxes for Jones and Brown but does not have information on Green.
Because at least one of the intended recipients has been verified, the client proceeds
to send the text message, by first sending a DATA command to ensure the server
is ready for the data. After the server acknowledges receipt of all the data, it issues
a 250 OK message. Then the client issues a QUIT command and the server closes
the connection.

A significant security-related extension for SMTP, called STARTTLS, is
defined in RFC 3207 (SMTP Service Extension for Secure SMTP over Transport
Layer Security, February 2002). STARTTLS enables the addition of confidentiality
and authentication in the exchange between SMTP agents. This gives SMTP agents
the ability to protect some or all of their communications from eavesdroppers
and attackers. If the client does initiate the connection over a TLS-enabled port
(e.g., port 465 was previously used for SMTP over SSL), the server may prompt with
a message indicating that the STARTTLS option is available. The client can then
issue the STARTTLS command in the SMTP command stream, and the two parties
proceed to establish a secure TLS connection. An advantage of using STARTTLS
is that the server can offer SMTP service on a single port, rather than requiring
separate port numbers for secure and cleartext operations. Similar mechanisms are
available for running TLS over IMAP and POP protocols.

Historically, MUA/MSA message transfers have used SMTP. The standard
currently preferred is SUBMISSION, defined in RFC 6409 (Message Submission
for Mail, November 2011). Although SUBMISSION derives from SMTP, it uses a
separate TCP port and imposes distinct requirements, such as access authorization.

Mail Access Protocols (POP3, IMAP)  Post Office Protocol (POP3) allows an
e-mail client (user agent) to download an e-mail from an e-mail server (MTA).
POP3 user agents connect via TCP to the server (typically port 110). The user
agent enters a username and password (either stored internally for convenience or
entered each time by the user for stronger security). After authorization, the UA
can issue POP3 commands to retrieve and delete mail.

As with POP3, Internet Mail Access Protocol (IMAP) also enables an e-mail
client to access mail on an e-mail server. IMAP also uses TCP, with server TCP port
143. IMAP is more complex than POP3. IMAP provides stronger authentication
than POP3 and provides other functions not supported by POP3.

	 8.2	E -mail Formats

To understand S/MIME, we need first to have a general understanding of the
underlying e-mail format that it uses, namely, MIME. But to understand the sig-
nificance of MIME, we need to go back to the traditional e-mail format standard,
RFC 822, which is still in common use. The most recent version of this format speci-
fication is RFC 5322 (Internet Message Format, October 2008). Accordingly, this
section first provides an introduction to these two earlier standards and then moves
on to a discussion of S/MIME.

M08_STAL4855_06_GE_C08.indd 258 8/9/16 9:20 PM

8.2 / E-mail Formats  259

RFC 5322

RFC 5322 defines a format for text messages that are sent using electronic mail. It
has been the standard for Internet-based text mail messages and remains in com-
mon use. In the RFC 5322 context, messages are viewed as having an envelope and
contents. The envelope contains whatever information is needed to accomplish
transmission and delivery. The contents compose the object to be delivered to the
recipient. The RFC 5322 standard applies only to the contents. However, the con-
tent standard includes a set of header fields that may be used by the mail system to
create the envelope, and the standard is intended to facilitate the acquisition of such
information by programs.

The overall structure of a message that conforms to RFC 5322 is very
simple. A message consists of some number of header lines (the header) fol-
lowed by unrestricted text (the body). The header is separated from the body
by a blank line. Put differently, a message is ASCII text, and all lines up to the
first blank line are assumed to be header lines used by the user agent part of the
mail system.

A header line usually consists of a keyword, followed by a colon, followed by
the keyword’s arguments; the format allows a long line to be broken up into several
lines. The most frequently used keywords are From, To, Subject, and Date. Here is
an example message:

Date: October 8, 2009 2:15:49 PM EDT

From: “William Stallings” <ws@shore.net>

Subject: The Syntax in RFC 5322

To: Smith@Other-host.com

Cc: Jones@Yet-Another-Host.com

Hello. This section begins the actual

message body, which is delimited from the

message heading by a blank line.

Another field that is commonly found in RFC 5322 headers is Message-ID.
This field contains a unique identifier associated with this message.

Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extension (MIME) is an extension to the RFC 5322
framework that is intended to address some of the problems and limitations of the
use of Simple Mail Transfer Protocol (SMTP) or some other mail transfer protocol
and RFC 5322 for electronic mail. RFCs 2045 through 2049 define MIME, and there
have been a number of updating documents since then.

As justification for the use of MIME, [PARZ06] lists the following limitations
of the SMTP/5322 scheme.

M08_STAL4855_06_GE_C08.indd 259 8/9/16 9:20 PM

mailto:ws@shore.net
mailto:Smith@Other-host.com
mailto:Jones@Yet-Another-Host.com

260   chapter 8 / Electronic Mail Security

1.	 SMTP cannot transmit executable files or other binary objects. A number
of schemes are in use for converting binary files into a text form that can
be used by SMTP mail systems, including the popular UNIX UUencode/
UUdecode scheme. However, none of these is a standard or even a de facto
standard.

2.	 SMTP cannot transmit text data that includes national language characters,
because these are represented by 8-bit codes with values of 128 decimal or
higher, and SMTP is limited to 7-bit ASCII.

3.	 SMTP servers may reject mail message over a certain size.

4.	 SMTP gateways that translate between ASCII and the character code EBCDIC
do not use a consistent set of mappings, resulting in translation problems.

5.	 SMTP gateways to X.400 electronic mail networks cannot handle nontextual
data included in X.400 messages.

6.	 Some SMTP implementations do not adhere completely to the SMTP
standards defined in RFC 821. Common problems include:

—Deletion, addition, or reordering of carriage return and linefeed

—Truncating or wrapping lines longer than 76 characters

—Removal of trailing white space (tab and space characters)

—Padding of lines in a message to the same length

—Conversion of tab characters into multiple space characters

MIME is intended to resolve these problems in a manner that is compatible
with existing RFC 5322 implementations.

Overview  The MIME specification includes the following elements.

1.	 Five new message header fields are defined, which may be included in an
RFC 5322 header. These fields provide information about the body of the
message.

2.	 A number of content formats are defined, thus standardizing representations
that support multimedia electronic mail.

3.	 Transfer encodings are defined that enable the conversion of any content
format into a form that is protected from alteration by the mail system.

In this subsection, we introduce the five message header fields. The next two
subsections deal with content formats and transfer encodings.

The five header fields defined in MIME are as follows:

■■ MIME-Version: Must have the parameter value 1.0. This field indicates that
the message conforms to RFCs 2045 and 2046.

■■ Content-Type: Describes the data contained in the body with sufficient detail
that the receiving user agent can pick an appropriate agent or mechanism to
represent the data to the user or otherwise deal with the data in an appropriate
manner.

M08_STAL4855_06_GE_C08.indd 260 8/9/16 9:20 PM

8.2 / E-mail Formats  261

■■ Content-Transfer-Encoding: Indicates the type of transformation that has
been used to represent the body of the message in a way that is acceptable for
mail transport.

■■ Content-ID: Used to identify MIME entities uniquely in multiple contexts.

■■ Content-Description: A text description of the object with the body; this is
useful when the object is not readable (e.g., audio data).

Any or all of these fields may appear in a normal RFC 5322 header. A compli-
ant implementation must support the MIME-Version, Content-Type, and Content-
Transfer-Encoding fields; the Content-ID and Content-Description fields are
optional and may be ignored by the recipient implementation.

MIME Content Types  The bulk of the MIME specification is concerned with
the definition of a variety of content types. This reflects the need to provide stan-
dardized ways of dealing with a wide variety of information representations in a
multimedia environment.

Table 8.1 lists the content types specified in RFC 2046. There are seven different
major types of content and a total of 15 subtypes. In general, a content type declares the
general type of data, and the subtype specifies a particular format for that type of data.

Type Subtype Description

Text Plain Unformatted text; may be ASCII or ISO 8859.
Enriched Provides greater format flexibility.

Multipart Mixed The different parts are independent but are to be transmitted
together. They should be presented to the receiver in the order
that they appear in the mail message.

Parallel Differs from Mixed only in that no order is defined for delivering
the parts to the receiver.

Alternative The different parts are alternative versions of the same
information. They are ordered in increasing faithfulness to the
original, and the recipient’s mail system should display the “best”
version to the user.

Digest Similar to Mixed, but the default type/subtype of each part is
message/rfc822.

Message rfc822 The body is itself an encapsulated message that conforms to RFC 822.
Partial Used to allow fragmentation of large mail items, in a way that is

transparent to the recipient.
External-body Contains a pointer to an object that exists elsewhere.

Image jpeg The image is in JPEG format, JFIF encoding.
gif The image is in GIF format.

Video mpeg MPEG format.
Audio Basic Single-channel 8-bit ISDN m-law encoding at a sample rate of

8 kHz.
Application PostScript Adobe Postscript format.

octet-stream General binary data consisting of 8-bit bytes.

Table 8.1  MIME Content Types

M08_STAL4855_06_GE_C08.indd 261 8/9/16 9:20 PM

262   chapter 8 / Electronic Mail Security

For the text type of body, no special software is required to get the full meaning
of the text aside from support of the indicated character set. The primary subtype is
plain text, which is simply a string of ASCII characters or ISO 8859 characters. The
enriched subtype allows greater formatting flexibility.

The multipart type indicates that the body contains multiple, independent
parts. The Content-Type header field includes a parameter (called boundary) that
defines the delimiter between body parts. This boundary should not appear in
any parts of the message. Each boundary starts on a new line and consists of two
hyphens followed by the boundary value. The final boundary, which indicates the
end of the last part, also has a suffix of two hyphens. Within each part, there may be
an optional ordinary MIME header.

Here is a simple example of a multipart message containing two parts—both
consisting of simple text (taken from RFC 2046):

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Sample message

MIME-Version: 1.0

Content-type: multipart/mixed; boundary=“simple boundary”

This is the preamble. It is to be ignored, though it is a
handy place for mail composers to include an explanatory
note to non-MIME conformant readers.

—simple boundary

This is implicitly typed plain ASCII text. It does NOT end
with a linebreak.

—simple boundary

Content-type: text/plain; charset=us-ascii

This is explicitly typed plain ASCII text. It DOES end
with a linebreak.

—simple boundary—

This is the epilogue. It is also to be ignored.

There are four subtypes of the multipart type, all of which have the same
overall syntax. The multipart/mixed subtype is used when there are multiple inde-
pendent body parts that need to be bundled in a particular order. For the multipart/
parallel subtype, the order of the parts is not significant. If the recipient’s system is
appropriate, the multiple parts can be presented in parallel. For example, a picture
or text part could be accompanied by a voice commentary that is played while the
picture or text is displayed.

For the multipart/alternative subtype, the various parts are different represen-
tations of the same information. The following is an example:

From: Nathaniel Borenstein <nsb@bellcore.com>
To: Ned Freed <ned@innosoft.com>
Subject: Formatted text mail

M08_STAL4855_06_GE_C08.indd 262 8/9/16 9:20 PM

mailto:nsb@bellcore.com
mailto:ned@innosoft.com
mailto:nsb@bellcore.com
mailto:ned@innosoft.com

8.2 / E-mail Formats  263

MIME-Version: 1.0

Content-Type: multipart/alternative;

boundary=boundary42

—boundary42

Content-Type: text/plain; charset=us-ascii

. . . plain text version of message goes here. . . .

—boundary42

Content-Type: text/enriched

. . . RFC 1896 text/enriched version of same message
goes here . . . 

—boundary42—

In this subtype, the body parts are ordered in terms of increasing preference.
For this example, if the recipient system is capable of displaying the message in the
text/enriched format, this is done; otherwise, the plain text format is used.

The multipart/digest subtype is used when each of the body parts is inter-
preted as an RFC 5322 message with headers. This subtype enables the construction
of a message whose parts are individual messages. For example, the moderator of a
group might collect e-mail messages from participants, bundle these messages, and
send them out in one encapsulating MIME message.

The message type provides a number of important capabilities in MIME.
The message/rfc822 subtype indicates that the body is an entire message, including
header and body. Despite the name of this subtype, the encapsulated message may
be not only a simple RFC 5322 message, but also any MIME message.

The message/partial subtype enables fragmentation of a large message into a
number of parts, which must be reassembled at the destination. For this subtype,
three parameters are specified in the Content-Type: Message/Partial field: an id
common to all fragments of the same message, a sequence number unique to each
fragment, and the total number of fragments.

The message/external-body subtype indicates that the actual data to be con-
veyed in this message are not contained in the body. Instead, the body contains the
information needed to access the data. As with the other message types, the mes-
sage/external-body subtype has an outer header and an encapsulated message with
its own header. The only necessary field in the outer header is the Content-Type
field, which identifies this as a message/external-body subtype. The inner header is
the message header for the encapsulated message. The Content-Type field in the
outer header must include an access-type parameter, which indicates the method of
access, such as FTP (file transfer protocol).

The application type refers to other kinds of data, typically either uninter-
preted binary data or information to be processed by a mail-based application.

MIME Transfer Encodings  The other major component of the MIME specifica-
tion, in addition to content type specification, is a definition of transfer encodings
for message bodies. The objective is to provide reliable delivery across the largest
range of environments.

M08_STAL4855_06_GE_C08.indd 263 8/9/16 9:20 PM

264   chapter 8 / Electronic Mail Security

The MIME standard defines two methods of encoding data. The Content-
Transfer-Encoding field can actually take on six values, as listed in Table 8.2.
However, three of these values (7-bit, 8-bit, and binary) indicate that no encod-
ing has been done but provide some information about the nature of the data. For
SMTP transfer, it is safe to use the 7-bit form. The 8-bit and binary forms may be
usable in other mail transport contexts. Another Content-Transfer-Encoding value
is x-token, which indicates that some other encoding scheme is used for which
a name is to be supplied. This could be a vendor-specific or application-specific
scheme. The two actual encoding schemes defined are quoted-printable and base64.
Two schemes are defined to provide a choice between a transfer technique that is
essentially human readable and one that is safe for all types of data in a way that is
reasonably compact.

The quoted-printable transfer encoding is useful when the data consists largely
of octets that correspond to printable ASCII characters. In essence, it represents
nonsafe characters by the hexadecimal representation of their code and introduces
reversible (soft) line breaks to limit message lines to 76 characters.

The base64 transfer encoding, also known as radix-64 encoding, is a common
one for encoding arbitrary binary data in such a way as to be invulnerable to the
processing by mail-transport programs. It is also used in PGP and is described in
Appendix H.

A Multipart Example  Figure 8.3, taken from RFC 2045, is the outline of a com-
plex multipart message. The message has five parts to be displayed serially: two
introductory plain text parts, an embedded multipart message, a richtext part, and
a closing encapsulated text message in a non-ASCII character set. The embedded
multipart message has two parts to be displayed in parallel: a picture and an audio
fragment.

Canonical Form  An important concept in MIME and S/MIME is that of canonical
form. Canonical form is a format, appropriate to the content type, that is standard-
ized for use between systems. This is in contrast to native form, which is a format that
may be peculiar to a particular system. RFC 2049 defines these two forms as follows:

■■ Native form: The body to be transmitted is created in the system’s native for-
mat. The native character set is used and, where appropriate, local end-of-line
conventions are used as well. The body may be any format that corresponds to

7 bit The data are all represented by short lines of ASCII characters.

8 bit The lines are short, but there may be non-ASCII characters (octets with the
high-order bit set).

binary Not only may non-ASCII characters be present but the lines are not necessarily
short enough for SMTP transport.

quoted-printable Encodes the data in such a way that if the data being encoded are mostly ASCII
text, the encoded form of the data remains largely recognizable by humans.

base64 Encodes data by mapping 6-bit blocks of input to 8-bit blocks of output, all of
which are printable ASCII characters.

x-token A named nonstandard encoding.

Table 8.2  MIME Transfer Encodings

M08_STAL4855_06_GE_C08.indd 264 8/9/16 9:20 PM

8.2 / E-mail Formats  265

MIME-Version: 1.0

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: A multipart example

Content-Type: multipart/mixed;

boundary=unique-boundary-1

This is the preamble area of a multipart message. Mail readers that
understand multipart format should ignore this preamble. If you are reading
this text, you might want to consider changing to a mail reader that
understands how to properly display multipart messages.

—unique-boundary-1

 . . . Some text appears here . . .

[Note that the preceding blank line means no header fields were given and
this is text, with charset US ASCII. It could have been done with explicit
typing as in the next part.]

—unique-boundary-1

Content-type: text/plain; charset=US-ASCII

This could have been part of the previous part, but illustrates explicit
versus implicit typing of body parts.

—unique-boundary-1

Content-Type: multipart/parallel; boundary=unique-boundary-2

—unique-boundary-2

Content-Type: audio/basic

Content-Transfer-Encoding: base64

 . . . base64-encoded 8000 Hz single-channel mu-law-format audio data goes
here

—unique-boundary-2

Content-Type: image/jpeg

Content-Transfer-Encoding: base64

 . . . base64-encoded image data goes here

—unique-boundary-2—

—unique-boundary-1

Content-type: text/enriched

This is richtext. as defined in RFC 1896

Isn’t it cool?

—unique-boundary-1

Content-Type: message/rfc822

From: (mailbox in US-ASCII)

To: (address in US-ASCII)

Subject: (subject in US-ASCII)

Content-Type: Text/plain; charset=ISO-8859-1

Content-Transfer-Encoding: Quoted-printable

 . . . Additional text in ISO-8859-1 goes here . . .

—unique-boundary-1—

Figure 8.3  Example MIME Message Structure

M08_STAL4855_06_GE_C08.indd 265 8/9/16 9:20 PM

mailto:nsb@bellcore.com
mailto:ned@innosoft.com

266   chapter 8 / Electronic Mail Security

the local model for the representation of some form of information. Examples
include a UNIX-style text file, or a Sun raster image, or a VMS indexed file, and
audio data in a system-dependent format stored only in memory. In essence,
the data are created in the native form that corresponds to the type specified
by the media type.

■■ Canonical form: The entire body, including out-of-band information such as
record lengths and possibly file attribute information, is converted to a univer-
sal canonical form. The specific media type of the body as well as its associated
attributes dictates the nature of the canonical form that is used. Conversion to
the proper canonical form may involve character set conversion, transforma-
tion of audio data, compression, or various other operations specific to the
various media types.

	 8.3	E -mail Threats and Comprehensive E-mail Security

For both organizations and individuals, e-mail is both pervasive and especially vul-
nerable to a wide range of security threats. In general terms, e-mail security threats
can be classified as follows:

■■ Authenticity-related threats: Could result in unauthorized access to an enter-
prise’s e-mail system.

■■ Integrity-related threats: Could result in unauthorized modification of e-mail
content.

■■ Confidentiality-related threats: Could result in unauthorized disclosure of
sensitive information.

■■ Availability-related threats: Could prevent end users from being able to send
or receive e-mail.

A useful list of specific e-mail threats, together with approaches to mitigation,
is provided in SP 800-177 (Trustworthy E-mail, September 2015) and is shown in
Table 8.3.

SP 800-177 recommends use of a variety of standardized protocols as a means
for countering these threats. These include:

■■ STARTTLS: An SMTP security extension that provides authentication, integ-
rity, non-repudiation (via digital signatures) and confidentiality (via encryp-
tion) for the entire SMTP message by running SMTP over TLS.

■■ S/MIME: Provides authentication, integrity, non-repudiation (via digital
signatures) and confidentiality (via encryption) of the message body carried
in SMTP messages.

■■ DNS Security Extensions (DNSSEC): Provides authentication and integ-
rity protection of DNS data, and is an underlying tool used by various e-mail
security protocols.

■■ DNS-based Authentication of Named Entities (DANE): Is designed to over-
come problems in the certificate authority (CA) system by providing an
alternative channel for authenticating public keys based on DNSSEC, with the

M08_STAL4855_06_GE_C08.indd 266 8/9/16 9:20 PM

8.3 / E-mail Threats and Comprehensive E-mail Security  267

Threat
Impact on Purported

Sender Impact on Receiver Mitigation

E-mail sent by
unauthorized MTA in
enterprise (e.g., malware
botnet)

Loss of reputation, valid
e-mail from enterprise
may be blocked as
possible spam/phishing
attack.

UBE and/or e-mail
containing malicious
links may be delivered
into user inboxes.

Deployment of domain-
based authentication
techniques. Use of
digital signatures over
e-mail.

E-mail message sent
using spoofed or
unregistered sending
domain

Loss of reputation, valid
e-mail from enterprise
may be blocked as
possible spam/phishing
attack.

UBE and/or e-mail
containing malicious
links may be delivered
into user inboxes.

Deployment of domain-
based authentication
techniques. Use of
digital signatures over
e-mail.

E-mail message sent
using forged sending
address or e-mail
address (i.e., phishing,
spear phishing)

Loss of reputation, valid
e-mail from enterprise
may be blocked as
possible spam/phishing
attack.

UBE and/or e-mail
containing malicious
links may be delivered.
Users may inadvertently
divulge sensitive
information or PII.

Deployment of domain-
based authentication
techniques. Use of
digital signatures over
e-mail.

E-mail modified in
transit

Leak of sensitive
information or PII.

Leak of sensitive
information, altered
message may contain
malicious information.

Use of TLS to encrypt
e-mail transfer between
servers. Use of end-to-
end e-mail encryption.

Disclosure of sensitive
information (e.g., PII) via
monitoring and capturing
of e-mail traffic

Leak of sensitive
information or PII.

Leak of sensitive
information, altered
message may contain
malicious information.

Use of TLS to encrypt
e-mail transfer between
servers. Use of end-to-
end e-mail encryption.

Unsolicited Bulk E-mail
(UBE) (i.e., spam)

None, unless purported
sender is spoofed.

UBE and/or e-mail
containing malicious
links may be delivered
into user inboxes.

Techniques to address
UBE.

DoS/DDoS attack
against an enterprises’
e-mail servers

Inability to send e-mail. Inability to receive
e-mail.

Multiple mail servers,
use of cloud-based
e-mail providers.

Table 8.3  E-mail Threats and Mitigations

result that the same trust relationships used to certify IP addresses are used to
certify servers operating on those addresses.

■■ Sender Policy Framework (SPF): Uses the Domain Name System (DNS) to
allow domain owners to create records that associate the domain name with a
specific IP address range of authorized message senders. It is a simple matter
for receivers to check the SPF TXT record in the DNS to confirm that the pur-
ported sender of a message is permitted to use that source address and reject
mail that does not come from an authorized IP address.

■■ DomainKeys Identified Mail (DKIM): Enables an MTA to sign selected
headers and the body of a message. This validates the source domain of the
mail and provides message body integrity.

■■ Domain-based Message Authentication, Reporting, and Conformance
(DMARC): Lets senders know the proportionate effectiveness of their SPF
and DKIM policies, and signals to receivers what action should be taken in
various individual and bulk attack scenarios.

M08_STAL4855_06_GE_C08.indd 267 8/9/16 9:20 PM

268   chapter 8 / Electronic Mail Security

Figure 8.4 shows how these components interact to provide message authen-
ticity and integrity. Not shown, for simplicity, is that S/MIME also provides message
confidentiality by encrypting messages.

	 8.4	S /MIME

Secure/Multipurpose Internet Mail Extension (S/MIME) is a security enhancement
to the MIME Internet e-mail format standard based on technology from RSA Data
Security. S/MIME is a complex capability that is defined in a number of documents.
The most important documents relevant to S/MIME include the following:

■■ RFC 5750, S/MIME Version 3.2 Certificate Handling: Specifies conventions
for X.509 certificate usage by (S/MIME) v3.2.

Figure 8.4 � The Interrelationship of DNSSEC, SPF, DKIM, DMARC, DANE, and
S/MIME for Assuring Message Authenticity and Integrity

msg

msg

sig

msg

sig

msg

sig

Sender
MUA

Sender’s S/MIME
signing key

(private key)

DKIM
signature

DKIM TXT RR provides

sending MTA’s public key

to receiving MTA

DMARC TXT tells receiving

MTA that sender uses

DKIM and SPF

DANE TLSA RR

specifies SMTP

TLS certifi
cate

Receiver MUA
verifies S/MIME

signature

DNSSEC secured

DNSSEC secured

MTA’s DKIM
signing key

DANE = DNS-based Authentication of Named Entities
DKIM = DomainKeys Identified Mail
DMARC = Domain-based Message Authentication, Reporting, and Conformance
DNSSEC = Domain Name System Security Extensions
SPF = Sender Policy Framework
S/MIME = Secure Multi-Purpose Internet Mail Extensions
TLSA RR = Transport Layer Security Authentication Resource Record

SP
F T

XT sp
ecf

ies

sen
de

r’s
 IP

 ad
dr

ess

Sender
DNS

Receiver
DNS

Receiver
MUA

Sending
MTA

Receiving
MTA

M08_STAL4855_06_GE_C08.indd 268 8/9/16 9:21 PM

8.4 / S/MIME  269

■■ RFC 5751, S/MIME) Version 3.2 Message Specification: The principal defining
document for S/MIME message creation and processing.

■■ RFC 4134, Examples of S/MIME Messages: Gives examples of message bodies
formatted using S/MIME.

■■ RFC 2634, Enhanced Security Services for S/MIME: Describes four optional
security service extensions for S/MIME.

■■ RFC 5652, Cryptographic Message Syntax (CMS): Describes the Crypto
graphic Message Syntax (CMS). This syntax is used to digitally sign, digest,
authenticate, or encrypt arbitrary message content.

■■ RFC 3370, CMS Algorithms: Describes the conventions for using several
cryptographic algorithms with the CMS.

■■ RFC 5752, Multiple Signatures in CMS: Describes the use of multiple, parallel
signatures for a message.

■■ RFC 1847, Security Multiparts for MIME—Multipart/Signed and Multipart/
Encrypted: Defines a framework within which security services may be applied
to MIME body parts. The use of a digital signature is relevant to S/MIME, as
explained subsequently.

Operational Description

S/MIME provides for four message-related services: authentication, confidential-
ity, compression, and e-mail compatibility (Table 8.4). This subsection provides
an overview. We then look in more detail at this capability by examining message
formats and message preparation.

Authentication  Authentication is provided by means of a digital signature, using
the general scheme discussed in Chapter 3 and illustrated in Figure 3.15. Most
commonly RSA with SHA-256 is used. The sequence is as follows:

1.	 The sender creates a message.

2.	 SHA-256 is used to generate a 256-bit message digest of the message.

Function Typical Algorithm Typical Action

Digital signature RSA/SHA-256 A hash code of a message is created using SHA-256.
This message digest is encrypted using SHA-256
with the sender’s private key and included with
the message.

Message encryption AES-128 with CBC A message is encrypted using AES-128 with CBC
with a one-time session key generated by the
sender. The session key is encrypted using RSA
with the recipient’s public key and included with
the message.

Compression unspecified A message may be compressed for storage or
transmission.

E-mail compatibility Radix-64 conversion To provide transparency for e-mail applications, an
encrypted message may be converted to an ASCII
string using radix-64 conversion.

Table 8.4  Summary of S/MIME Services

M08_STAL4855_06_GE_C08.indd 269 8/9/16 9:21 PM

270   chapter 8 / Electronic Mail Security

3.	 The message digest is encrypted with RSA using the sender’s private key, and
the result is appended to the message. Also appended is identifying information
for the signer, which will enable the receiver to retrieve the signer’s public key.

4.	 The receiver uses RSA with the sender’s public key to decrypt and recover the
message digest.

5.	 The receiver generates a new message digest for the message and compares
it with the decrypted hash code. If the two match, the message is accepted as
authentic.

The combination of SHA-256 and RSA provides an effective digital signature
scheme. Because of the strength of RSA, the recipient is assured that only the pos-
sessor of the matching private key can generate the signature. Because of the strength
of SHA-256, the recipient is assured that no one else could generate a new message
that matches the hash code and, hence, the signature of the original message.

Although signatures normally are found attached to the message or file that
they sign, this is not always the case: Detached signatures are supported. A detached
signature may be stored and transmitted separately from the message it signs. This
is useful in several contexts. A user may wish to maintain a separate signature log
of all messages sent or received. A detached signature of an executable program
can detect subsequent virus infection. Finally, detached signatures can be used
when more than one party must sign a document, such as a legal contract. Each
person’s signature is independent and therefore is applied only to the document.
Otherwise, signatures would have to be nested, with the second signer signing both
the document and the first signature, and so on.

Confidentiality  S/MIME provides confidentiality by encrypting messages. Most
commonly AES with a 128-bit key is used, with the cipher block chaining (CBC)
mode. The key itself is also encrypted, typically with RSA, as explained below.

As always, one must address the problem of key distribution. In S/MIME,
each symmetric key, referred to as a content-encryption key, is used only once. That
is, a new key is generated as a random number for each message. Because it is to be
used only once, the content-encryption key is bound to the message and transmit-
ted with it. To protect the key, it is encrypted with the receiver’s public key. The
sequence can be described as follows:

1.	 The sender generates a message and a random 128-bit number to be used as a
content-encryption key for this message only.

2.	 The message is encrypted using the content-encryption key.

3.	 The content-encryption key is encrypted with RSA using the recipient’s public
key and is attached to the message.

4.	 The receiver uses RSA with its private key to decrypt and recover the
content-encryption key.

5.	 The content-encryption key is used to decrypt the message.

Several observations may be made. First, to reduce encryption time, the com-
bination of symmetric and public-key encryption is used in preference to simply
using public-key encryption to encrypt the message directly: Symmetric algorithms

M08_STAL4855_06_GE_C08.indd 270 8/9/16 9:21 PM

8.4 / S/MIME  271

are substantially faster than asymmetric ones for a large block of content. Second,
the use of the public-key algorithm solves the session-key distribution problem,
because only the recipient is able to recover the session key that is bound to the
message. Note that we do not need a session-key exchange protocol of the type
discussed in Chapter 4, because we are not beginning an ongoing session. Rather,
each message is a one-time independent event with its own key. Furthermore, given
the store-and-forward nature of electronic mail, the use of handshaking to assure
that both sides have the same session key is not practical. Finally, the use of one-
time symmetric keys strengthens what is already a strong symmetric encryption
approach. Only a small amount of plaintext is encrypted with each key, and there is
no relationship among the keys. Thus, to the extent that the public-key algorithm is
secure, the entire scheme is secure.

Confidentiality and Authentication  As Figure 8.5 illustrates, both confidential-
ity and encryption may be used for the same message. The figure shows a sequence
in which a signature is generated for the plaintext message and appended to the
message. Then the plaintext message and signature are encrypted as a single block
using symmetric encryption and the symmetric encryption key is encrypted using
public-key encryption.

S/MIME allows the signing and message encryption operations to be per-
formed in either order. If signing is done first, the identity of the signer is hidden
by the encryption. Plus, it is generally more convenient to store a signature with a
plaintext version of a message. Furthermore, for purposes of third-party verifica-
tion, if the signature is performed first, a third party need not be concerned with the
symmetric key when verifying the signature.

If encryption is done first, it is possible to verify a signature without exposing
the message content. This can be useful in a context in which automatic signature
verification is desired, as no private key material is required to verify a signature.
However, in this case the recipient cannot determine any relationship between the
signer and the unencrypted content of the message.

E-mail Compatibility  When S/MIME is used, at least part of the block to be trans-
mitted is encrypted. If only the signature service is used, then the message digest is
encrypted (with the sender’s private key). If the confidentiality service is used, the
message plus signature (if present) are encrypted (with a one-time symmetric key).
Thus, part or all of the resulting block consists of a stream of arbitrary 8-bit octets.
However, many electronic mail systems only permit the use of blocks consisting
of ASCII text. To accommodate this restriction, S/MIME provides the service of
converting the raw 8-bit binary stream to a stream of printable ASCII characters,
a process referred to as 7-bit encoding.

The scheme typically used for this purpose is Base64 conversion. Each group of
three octets of binary data is mapped into four ASCII characters. See Appendix K for
a description.

One noteworthy aspect of the Base64 algorithm is that it blindly converts the
input stream to Base64 format regardless of content, even if the input happens to
be ASCII text. Thus, if a message is signed but not encrypted and the conversion
is applied to the entire block, the output will be unreadable to the casual observer,
which provides a certain level of confidentiality.

M08_STAL4855_06_GE_C08.indd 271 8/9/16 9:21 PM

272   chapter 8 / Electronic Mail Security

RFC 5751 also recommends that even if outer 7-bit encoding is not used, the
original MIME content should be 7-bit encoded. The reason for this is that it allows
the MIME entity to be handled in any environment without changing it. For exam-
ple, a trusted gateway might remove the encryption, but not the signature, of a mes-
sage, and then forward the signed message on to the end recipient so that they can
verify the signatures directly. If the transport internal to the site is not 8-bit clean,
such as on a wide area network with a single mail gateway, verifying the signature
will not be possible unless the original MIME entity was only 7-bit data.

Compression  S/MIME also offers the ability to compress a message. This has
the benefit of saving space both for e-mail transmission and for file storage.

Figure 8.5  Simplified S/MIME Functional Flow

Sign
(e.g., RSA/
SHA-256)

Sender’s
private key

(a) Sender signs, then encrypts message

(b) Receiver decrypts message, then veri�es sender’s signature

One-time
secret key

Encrypt
(e.g,

AES-128/
CBC

Encrypt
(e.g., RSA)

msg msg

sig sig

sig

msg

sig

Receiver’s
public key

Sender’s
public key

Decrypt
(e.g., RSA)

Receiver’s
private key

Secret key
generated by

sender

Decrypt
(e.g,

AES-128/
CBC

Verify
signature

(e.g., RSA/
SHA-256)

msg

msg

M08_STAL4855_06_GE_C08.indd 272 8/9/16 9:21 PM

8.4 / S/MIME  273

Compression can be applied in any order with respect to the signing and message
encryption operations. RFC 5751 provides the following guidelines:

■■ Compression of binary encoded encrypted data is discouraged, since it will not
yield significant compression. Base64 encrypted data could very well benefit,
however.

■■ If a lossy compression algorithm is used with signing, you will need to compress
first, then sign.

S/MIME Message Content Types

S/MIME uses the following message content types, which are defined in RFC 5652,
Cryptographic Message Syntax:

■■ Data: Refers to the inner MIME-encoded message content, which may then
be encapsulated in a SignedData, EnvelopedData, or CompressedData con-
tent type.

■■ SignedData: Used to apply a digital signature to a message.

■■ EnvelopedData: This consists of encrypted content of any type and encrypted-
content encryption keys for one or more recipients.

■■ CompressedData: Used to apply data compression to a message.

The Data content type is also used for a procedure known as clear signing.
For clear signing, a digital signature is calculated for a MIME-encoded message and
the two parts, the message and signature, form a multipart MIME message. Unlike
SignedData, which involves encapsulating the message and signature in a special
format, clear-signed messages can be read and their signatures verified by e-mail
entities that do not implement S/MIME.

Approved Cryptographic Algorithms

Table 8.5 summarizes the cryptographic algorithms used in S/MIME. S/MIME uses
the following terminology taken from RFC 2119 (Key Words for use in RFCs to
Indicate Requirement Levels, March 1997) to specify the requirement level:

■■ MUST: The definition is an absolute requirement of the specification. An
implementation must include this feature or function to be in conformance
with the specification.

■■ SHOULD: There may exist valid reasons in particular circumstances to ignore
this feature or function, but it is recommended that an implementation include
the feature or function.

The S/MIME specification includes a discussion of the procedure for deciding
which content encryption algorithm to use. In essence, a sending agent has two deci-
sions to make. First, the sending agent must determine if the receiving agent is capable
of decrypting using a given encryption algorithm. Second, if the receiving agent is only
capable of accepting weakly encrypted content, the sending agent must decide if it is
acceptable to send using weak encryption. To support this decision process, a sending
agent may announce its decrypting capabilities in order of preference for any message
that it sends out. A receiving agent may store that information for future use.

M08_STAL4855_06_GE_C08.indd 273 8/9/16 9:21 PM

274   chapter 8 / Electronic Mail Security

The following rules, in the following order, should be followed by a sending agent.

1.	 If the sending agent has a list of preferred decrypting capabilities from an
intended recipient, it SHOULD choose the first (highest preference) capabil-
ity on the list that it is capable of using.

2.	 If the sending agent has no such list of capabilities from an intended recipient
but has received one or more messages from the recipient, then the outgoing
message SHOULD use the same encryption algorithm as was used on the last
signed and encrypted message received from that intended recipient.

3.	 If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is willing to risk that the recipient may not be able to
decrypt the message, then the sending agent SHOULD use triple DES.

4.	 If the sending agent has no knowledge about the decryption capabilities of the
intended recipient and is not willing to risk that the recipient may not be able
to decrypt the message, then the sending agent MUST use RC2/40.

If a message is to be sent to multiple recipients and a common encryption
algorithm cannot be selected for all, then the sending agent will need to send two
messages. However, in that case, it is important to note that the security of the
message is made vulnerable by the transmission of one copy with lower security.

S/MIME Messages

S/MIME makes use of a number of new MIME content types. All of the new applica-
tion types use the designation PKCS. This refers to a set of public-key cryptography
specifications issued by RSA Laboratories and made available for the S/MIME effort.

Function Requirement

Create a message digest to be used in
forming a digital signature.

MUST support SHA-256

SHOULD support SHA-1

Receiver SHOULD support MD5 for backward compatibility
Use message digest to form a digital
signature.

MUST support RSA with SHA-256
SHOULD support
—DSA with SHA-256
—RSASSA-PSS with SHA-256
—RSA with SHA-1
—DSA with SHA-1
—RSA with MD5

Encrypt session key for transmission with
a message.

MUST support RSA encryption
SHOULD support
—RSAES-OAEP
—Diffie–Hellman ephemeral-static mode

Encrypt message for transmission with a
one-time session key.

MUST support AES-128 with CBC
SHOULD support
—AES-192 CBC and AES-256 CBC
—Triple DES CBC

Table 8.5  Cryptographic Algorithms Used in S/MIME

M08_STAL4855_06_GE_C08.indd 274 8/9/16 9:21 PM

8.4 / S/MIME  275

We examine each of these in turn after first looking at the general procedures
for S/MIME message preparation.

Securing a Mime Entity  S/MIME secures a MIME entity with a signature,
encryption, or both. A MIME entity may be an entire message (except for the RFC
5322 headers), or if the MIME content type is multipart, then a MIME entity is one
or more of the subparts of the message. The MIME entity is prepared according
to the normal rules for MIME message preparation. Then the MIME entity plus
some security-related data, such as algorithm identifiers and certificates, are pro-
cessed by S/MIME to produce what is known as a PKCS object. A PKCS object is
then treated as message content and wrapped in MIME (provided with appropriate
MIME headers). This process should become clear as we look at specific objects
and provide examples.

In all cases, the message to be sent is converted to canonical form. In par-
ticular, for a given type and subtype, the appropriate canonical form is used for the
message content. For a multipart message, the appropriate canonical form is used
for each subpart.

The use of transfer encoding requires special attention. For most cases, the
result of applying the security algorithm will be to produce an object that is partially
or totally represented in arbitrary binary data. This will then be wrapped in an outer
MIME message and transfer encoding can be applied at that point, typically base64.
However, in the case of a multipart signed message (described in more detail later),
the message content in one of the subparts is unchanged by the security process.
Unless that content is 7 bit, it should be transfer encoded using base64 or quoted-
printable so that there is no danger of altering the content to which the signature
was applied.

We now look at each of the S/MIME content types.

EnvelopedData  An application/pkcs7-mime subtype is used for one of four cat-
egories of S/MIME processing, each with a unique smime-type parameter. In all
cases, the resulting entity, (referred to as an object) is represented in a form known
as Basic Encoding Rules (BER), which is defined in ITU-T Recommendation
X.209. The BER format consists of arbitrary octet strings and is therefore binary
data. Such an object should be transfer encoded with base64 in the outer MIME
message. We first look at envelopedData.

The steps for preparing an envelopedData MIME entity are:

1.	 Generate a pseudorandom session key for a particular symmetric encryption
algorithm (RC2/40 or triple DES).

2.	 For each recipient, encrypt the session key with the recipient’s public RSA key.

3.	 For each recipient, prepare a block known as RecipientInfo that contains
an identifier of the recipient’s public-key certificate,1 an identifier of the
algorithm used to encrypt the session key, and the encrypted session key.

4.	 Encrypt the message content with the session key.

1This is an X.509 certificate, discussed later in this section.

M08_STAL4855_06_GE_C08.indd 275 8/9/16 9:21 PM

276   chapter 8 / Electronic Mail Security

The RecipientInfo blocks followed by the encrypted content constitute the
envelopedData. This information is then encoded into base64. A sample message
(excluding the RFC 5322 headers) is given below.

Content-Type: application/pkcs7-mime; smime-type=enveloped-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

rfvbnj756tbBghyHhHUujhJhjH77n8HHGT9HG4VQpfyF467GhIGfHfYT6

7n8HHGghyHhHUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H

f8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

0GhIGfHfQbnj756YT64V

To recover the encrypted message, the recipient first strips off the base64
encoding. Then the recipient’s private key is used to recover the session key. Finally,
the message content is decrypted with the session key.

SignedData  The signedData smime-type can be used with one or more signers.
For clarity, we confine our description to the case of a single digital signature. The
steps for preparing a signedData MIME entity are as follows.

1.	 Select a message digest algorithm (SHA or MD5).

2.	 Compute the message digest (hash function) of the content to be signed.

3.	 Encrypt the message digest with the signer’s private key.

4.	 Prepare a block known as SignerInfo that contains the signer’s public-key
certificate, an identifier of the message digest algorithm, an identifier of the
algorithm used to encrypt the message digest, and the encrypted message
digest.

The signedData entity consists of a series of blocks, including a message
digest algorithm identifier, the message being signed, and SignerInfo. The
signedData entity may also include a set of public-key certificates sufficient to
constitute a chain from a recognized root or top-level certification authority to the
signer. This information is then encoded into base64. A sample message (excluding
the RFC 5322 headers) is the following.

Content-Type: application/pkcs7-mime; smime-type=signed-

data; name=smime.p7m

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7m

567GhIGfHfYT6ghyHhHUujpfyF4f8HHGTrfvhJhjH776tbB9HG4VQbnj7

77n8HHGT9HG4VQpfyF467GhIGfHfYT6rfvbnj756tbBghyHhHUujhJhjH

HUujhJh4VQpfyF467GhIGfHfYGTrfvbnjT6jH7756tbB9H7n8HHGghyHh

6YT64V0GhIGfHfQbnj75

M08_STAL4855_06_GE_C08.indd 276 8/9/16 9:21 PM

8.4 / S/MIME  277

To recover the signed message and verify the signature, the recipient first strips
off the base64 encoding. Then the signer’s public key is used to decrypt the message
digest. The recipient independently computes the message digest and compares it to
the decrypted message digest to verify the signature.

Clear Signing  Clear signing is achieved using the multipart content type with
a signed subtype. As was mentioned, this signing process does not involve trans-
forming the message to be signed, so that the message is sent “in the clear.” Thus,
recipients with MIME capability but not S/MIME capability are able to read the
incoming message.

A multipart/signed message has two parts. The first part can be any MIME
type but must be prepared so that it will not be altered during transfer from source
to destination. This means that if the first part is not 7 bit, then it needs to be encoded
using base64 or quoted-printable. Then this part is processed in the same manner
as signedData, but in this case an object with signedData format is created that
has an empty message content field. This object is a detached signature. It is then
transfer encoded using base64 to become the second part of the multipart/signed
message. This second part has a MIME content type of application and a subtype of
pkcs7-signature. Here is a sample message:

Content-Type: multipart/signed;

protocol=”application/pkcs7-signature”;

micalg=sha1; boundary=boundary42

—boundary42

Content-Type: text/plain

This is a clear-signed message.

—boundary42

Content-Type: application/pkcs7-signature; name=smime.p7s

Content-Transfer-Encoding: base64

Content-Disposition: attachment; filename=smime.p7s

ghyHhHUujhJhjH77n8HHGTrfvbnj756tbB9HG4VQpfyF467GhIGfHfYT6

4VQpfyF467GhIGfHfYT6jH77n8HHGghyHhHUujhJh756tbB9HGTrfvbnj

n8HHGTrfvhJhjH776tbB9HG4VQbnj7567GhIGfHfYT6ghyHhHUujpfyF4

7GhIGfHfYT64VQbnj756

—boundary42—

The protocol parameter indicates that this is a two-part clear-signed entity.
The micalg parameter indicates the type of message digest used. The receiver can
verify the signature by taking the message digest of the first part and comparing this
to the message digest recovered from the signature in the second part.

Registration Request  Typically, an application or user will apply to a certi-
fication authority for a public-key certificate. The application/pkcs10 S/MIME

M08_STAL4855_06_GE_C08.indd 277 8/9/16 9:21 PM

278   chapter 8 / Electronic Mail Security

entity is used to transfer a certification request. The certification request
includes certificationRequestInfo block, followed by an identifier
of the public-key encryption algorithm, followed by the signature of the
certificationRequestInfo block, made using the sender’s private key. The
certificationRequestInfo block includes a name of the certificate subject
(the entity whose public key is to be certified) and a bit-string representation of the
user’s public key.

Certificates-Only Message  A message containing only certificates or a certificate
revocation list (CRL) can be sent in response to a registration request. The message
is an application/pkcs7-mime type/subtype with an smime-type parameter of degen-
erate. The steps involved are the same as those for creating a signedData message,
except that there is no message content and the signerInfo field is empty.

S/MIME Certificate Processing

S/MIME uses public-key certificates that conform to version 3 of X.509 (see Chapter 4).
S/MIME managers and/or users must configure each client with a list of trusted keys
and with certificate revocation lists. That is, the responsibility is local for maintaining
the certificates needed to verify incoming signatures and to encrypt outgoing messages.
On the other hand, the certificates are signed by certification authorities.

User Agent Role  An S/MIME user has several key management functions to
perform.

■■ Key generation: The user of some related administrative utility (e.g., one
associated with LAN management) MUST be capable of generating separate
Diffie–Hellman and DSS key pairs and SHOULD be capable of generating
RSA key pairs. Each key pair MUST be generated from a good source of
nondeterministic random input and be protected in a secure fashion. A user
agent SHOULD generate RSA key pairs with a length in the range of 768 to
1024 bits and MUST NOT generate a length of less than 512 bits.

■■ Registration: A user’s public key must be registered with a certification
authority in order to receive an X.509 public-key certificate.

■■ Certificate storage and retrieval: A user requires access to a local list of certifi-
cates in order to verify incoming signatures and to encrypt outgoing messages.
Such a list could be maintained by the user or by some local administrative
entity on behalf of a number of users.

Enhanced Security Services

RFC 2634 defines four enhanced security services for S/MIME:

■■ Signed receipts: A signed receipt may be requested in a SignedData object.
Returning a signed receipt provides proof of delivery to the originator of a
message and allows the originator to demonstrate to a third party that the
recipient received the message. In essence, the recipient signs the entire
original message plus the original (sender’s) signature and appends the new
signature to form a new S/MIME message.

M08_STAL4855_06_GE_C08.indd 278 8/9/16 9:21 PM

8.5 / Pretty Good Privacy  279

■■ Security labels: A security label may be included in the authenticated attributes
of a SignedData object. A security label is a set of security information
regarding the sensitivity of the content that is protected by S/MIME encapsu-
lation. The labels may be used for access control, by indicating which users are
permitted access to an object. Other uses include priority (secret, confidential,
restricted, and so on) or role based, describing which kind of people can see
the information (e.g., patient’s health-care team, medical billing agents).

■■ Secure mailing lists: When a user sends a message to multiple recipients, a
certain amount of per-recipient processing is required, including the use of
each recipient’s public key. The user can be relieved of this work by employ-
ing the services of an S/MIME Mail List Agent (MLA). An MLA can take a
single incoming message, perform the recipient-specific encryption for each
recipient, and forward the message. The originator of a message need only
send the message to the MLA with encryption performed using the MLA’s
public key.

■■ Signing certificates: This service is used to securely bind a sender’s certificate
to their signature through a signing certificate attribute.

	 8.5	P retty Good Privacy

An alternative e-mail security protocol is Pretty Good Privacy (PGP), which has
essentially the same functionality as S/MIME. PGP was created by Phil Zimmerman
and implemented as a product first released in 1991. It was made available free of
charge and became quite popular for personal use. The initial PGP protocol was
proprietary and used some encryption algorithms with intellectual property restric-
tions. In 1996, version 5.x of PGP was defined in IETF RFC 1991, PGP Message
Exchange Formats. Subsequently, OpenPGP was developed as a new standard
protocol based on PGP version 5.x. OpenPGP is defined in RFC 4880 (OpenPGP
Message Format, November 2007) and RFC 3156 (MIME Security with OpenPGP,
August 2001).

There are two significant differences between S/MIME and OpenPGP:

■■ Key Certification: S/MIME uses X.509 certificates that are issued by Certificate
Authorities (or local agencies that have been delegated authority by a CA to
issue certificates). In OpenPGP, users generate their own OpenPGP public
and private keys and then solicit signatures for their public keys from individu-
als or organizations to which they are known. Whereas X.509 certificates are
trusted if there is a valid PKIX chain to a trusted root, an OpenPGP public key
is trusted if it is signed by another OpenPGP public key that is trusted by the
recipient. This is called the Web-of-Trust.

■■ Key Distribution: OpenPGP does not include the sender’s public key with
each message, so it is necessary for recipients of OpenPGP messages to sepa-
rately obtain the sender’s public key in order to verify the message. Many
organizations post OpenPGP keys on TLS-protected websites: People who
wish to verify digital signatures or send these organizations encrypted mail

M08_STAL4855_06_GE_C08.indd 279 8/9/16 9:21 PM

280   chapter 8 / Electronic Mail Security

need to manually download these keys and add them to their OpenPGP
clients. Keys may also be registered with the OpenPGP public key servers,
which are servers that maintain a database of PGP public keys organized by
e-mail address. Anyone may post a public key to the OpenPGP key servers,
and that public key may contain any e-mail address. There is no vetting of
OpenPGP keys, so users must use the Web-of-Trust to decide whether to trust
a given public key.

SP 800-177 recommends the use of S/MIME rather than PGP because of the
greater confidence in the CA system of verifying public keys.

Appendix H provides an overview of PGP.

	 8.6	DNSSEC

DNS Security Extensions (DNSSEC) are used by several protocols that provide
e-mail security. This section provides a brief overview of the Domain Name System
(DNS) and then looks at DNSSEC.

Domain Name System

DNS is a directory lookup service that provides a mapping between the name of a
host on the Internet and its numeric IP address. DNS is essential to the functioning
of the Internet. The DNS is used by MUAs and MTAs to find the address of the
next hop server for mail delivery. Sending MTAs query DNS for the Mail Exchange
Resource Record (MX RR) of the recipient’s domain (the right hand side of the
“@” symbol) in order to find the receiving MTA to contact.

Four elements comprise the DNS:

■■ Domain name space: DNS uses a tree-structured name space to identify
resources on the Internet.

■■ DNS database: Conceptually, each node and leaf in the name space tree struc-
ture names a set of information (e.g., IP address, name server for this domain
name) that is contained in resource record. The collection of all RRs is orga-
nized into a distributed database.

■■ Name servers: These are server programs that hold information about a por-
tion of the domain name tree structure and the associated RRs.

■■ Resolvers: These are programs that extract information from name servers in
response to client requests. A typical client request is for an IP address corre-
sponding to a given domain name.

The DNS Database  DNS is based on a hierarchical database containing resource
records (RRs) that include the name, IP address, and other information about hosts.
The key features of the database are as follows:

■■ Variable-depth hierarchy for names: DNS allows essentially unlimited levels
and uses the period (.) as the level delimiter in printed names, as described
earlier.

M08_STAL4855_06_GE_C08.indd 280 8/9/16 9:21 PM

8.6 / DNSSEC  281

■■ Distributed database: The database resides in DNS servers scattered through-
out the Internet.

■■ Distribution controlled by the database: The DNS database is divided into
thousands of separately managed zones, which are managed by separate
administrators. Distribution and update of records is controlled by the database
software.

Using this database, DNS servers provide a name-to-address directory service
for network applications that need to locate specific servers. For example, every
time an e-mail message is sent or a Web page is accessed, there must be a DNS
name lookup to determine the IP address of the e-mail server or Web server.

Table 8.6 lists the various types of resource records.

DNS Operation  DNS operation typically includes the following steps (Figure 8.6):

1.	 A user program requests an IP address for a domain name.

2.	 A resolver module in the local host or local ISP queries a local name server in
the same domain as the resolver.

3.	 The local name server checks to see if the name is in its local database or cache,
and, if so, returns the IP address to the requestor. Otherwise, the name server
queries other available name servers, if necessary going to the root server, as
explained subsequently.

4.	 When a response is received at the local name server, it stores the name/
address mapping in its local cache and may maintain this entry for the amount
of time specified in the time-to-live field of the retrieved RR.

5.	 The user program is given the IP address or an error message.

Type Description

A A host address. This RR type maps the name of a system to its IPv4 address. Some
systems (e.g., routers) have multiple addresses, and there is a separate RR for each.

AAAA Similar to A type, but for IPv6 addresses.
CNAME Canonical name. Specifies an alias name for a host and maps this to the canonical

(true) name.
HINFO Host information. Designates the processor and operating system used by the host.
MINFO Mailbox or mail list information. Maps a mailbox or mail list name to a host name.
MX Mail exchange. Identifies the system(s) via which mail to the queried domain name

should be relayed.
NS Authoritative name server for this domain.
PTR Domain name pointer. Points to another part of the domain name space.
SOA Start of a zone of authority (which part of naming hierarchy is implemented). Includes

parameters related to this zone.
SRV For a given service provides name of server or servers in domain that provide that service.
TXT Arbitrary text. Provides a way to add text comments to the database.
WKS Well-known services. May list the application services available at this host.

Table 8.6  Resource Record Types

M08_STAL4855_06_GE_C08.indd 281 8/9/16 9:21 PM

282   chapter 8 / Electronic Mail Security

The distributed DNS database that supports the DNS functionality must be
updated frequently because of the rapid and continued growth of the Internet.
Further, the DNS must cope with dynamic assignment of IP addresses, such as is
done for home DSL users by their ISP. Accordingly, dynamic updating functions
for DNS have been defined. In essence, DNS name servers automatically send out
updates to other relevant name servers as conditions warrant.

DNS Security Extensions

DNSSEC provides end-to-end protection through the use of digital signatures that
are created by responding zone administrators and verified by a recipient’s resolver
software. In particular, DNSSEC avoids the need to trust intermediate name servers
and resolvers that cache or route the DNS records originating from the responding
zone administrator before they reach the source of the query. DNSSEC consists of
a set of new resource record types and modifications to the existing DNS protocol,
and is defined in the following documents:

■■ RFC 4033, DNS Security Introduction and Requirements: Introduces the
DNS security extensions and describes their capabilities and limitations. The
document also discusses the services that the DNS security extensions do and
do not provide.

■■ RFC 4034, Resource Records for the DNS Security Extensions: Defines four
new resource records that provide security for DNS.

Figure 8.6  DNS Name Resolution

User
program

User
system

Internet
user

query query

query

user
response

response

res
ponse

Name
resolver

Cache

Name
server

Cache

Database

Database

Foreign
name
server

Cache

M08_STAL4855_06_GE_C08.indd 282 8/9/16 9:21 PM

8.6 / DNSSEC  283

■■ RFC 4035, Protocol Modifications for the DNS Security Extensions: Defines
the concept of a signed zone, along with the requirements for serving and
resolving by using DNSSEC. These techniques allow a security-aware resolver
to authenticate both DNS resource records and authoritative DNS error
indications.

DNSSEC Operation  In essence, DNSSEC is designed to protect DNS clients
from accepting forged or altered DNS resource records. It does this by using digital
signatures to provide:

■■ Data origin authentication: Ensures that data has originated from the correct
source.

■■ Data integrity verification: Ensures that the content of a RR has not been
modified.

The DNS zone administrator digitally signs every Resource Record set
(RRset) in the zone, and publishes this collection of digital signatures, along with
the zone administrator’s public key, in the DNS itself. In DNSSEC, trust in the pub-
lic key (for signature verification) of the source is established not by going to a third
party or a chain of third parties (as in public key infrastructure [PKI] chaining), but
by starting from a trusted zone (such as the root zone) and establishing the chain of
trust down to the current source of response through successive verifications of sig-
nature of the public key of a child by its parent. The public key of the trusted zone
is called the trust anchor.

Resource Records for DNSSEC  RFC 4034 defines four new DNS resource
records:

■■ DNSKEY: Contains a public key.

■■ RRSIG: A resource record digital signature.

■■ NSEC: Authenticated denial of existence record.

■■ DS: Delegation signer.

An RRSIG is associated with each RRset, where an RRset is the set of
resource records that have the same label, class, and type. When a client requests
data, an RRset is returned, together with the associated digital signature in an
RRSIG record. The client obtains the relevant DNSKEY public key and verifies
the signature for this RRset.

DNSSEC depends on establishing the authenticity of the DNS hierarchy lead-
ing to the domain name in question, and thus its operation depends on beginning
the use of cryptographic digital signatures in the root zone. The DS resource record
facilitates key signing and authentication between DNS zones to create an authen-
tication chain, or trusted sequence of signed data, from the root of the DNS tree
down to a specific domain name. To secure all DNS lookups, including those for
non-existent domain names and record types, DNSSEC uses the NSEC resource
record to authenticate negative responses to queries. NSEC is used to identify the

M08_STAL4855_06_GE_C08.indd 283 8/9/16 9:21 PM

284   chapter 8 / Electronic Mail Security

range of DNS names or resource record types that do not exist among the sequence
of domain names in a zone.

	 8.7	DNS -Based Authentication of Named Entities

DANE is a protocol to allow X.509 certificates, commonly used for Transport Layer
Security (TLS), to be bound to DNS names using DNSSEC. It is proposed in RFC
6698 as a way to authenticate TLS client and server entities without a certificate
authority (CA).

The rationale for DANE is the vulnerability of the use of CAs in a global PKI
system. Every browser developer and operating system supplier maintains a list of
CA root certificates as trust anchors. These are called the software’s root certifi-
cates and are stored in its root certificate store. The PKIX procedure allows a cer-
tificate recipient to trace a certificate back to the root. So long as the root certificate
remains trustworthy, and the authentication concludes successfully, the client can
proceed with the connection.

However, if any of the hundreds of CAs operating on the Internet is compro-
mised, the effects can be widespread. The attacker can obtain the CA’s private key,
get issued certificates under a false name, or introduce new bogus root certificates
into a root certificate store. There is no limitation of scope for the global PKI and
a compromise of a single CA damages the integrity of the entire PKI system. In
addition, some CAs have engaged in poor security practices. For example, some
CAs have issued wildcard certificates that allow the holder to issue sub-certificates
for any domain or entity, anywhere in the world.

The purpose of DANE is to replace reliance on the security of the CA system
with reliance on the security provided by DNSSEC. Given that the DNS adminis-
trator for a domain name is authorized to give identifying information about the
zone, it makes sense to allow that administrator to also make an authoritative bind-
ing between the domain name and a certificate that might be used by a host at that
domain name.

TLSA Record

DANE defines a new DNS record type, TLSA, that can be used for a secure method
of authenticating SSL/TLS certificates. The TLSA provides for:

■■ Specifying constraints on which CA can vouch for a certificate, or which
specific PKIX end-entity certificate is valid.

■■ Specifying that a service certificate or a CA can be directly authenticated in
the DNS itself.

The TLSA RR enables certificate issue and delivery to be tied to a given
domain. A server domain owner creates a TLSA resource record that identifies the
certificate and its public key. When a client receives an X.509 certificate in the TLS
negotiation, it looks up the TLSA RR for that domain and matches the TLSA data
against the certificate as part of the client’s certificate validation procedure.

M08_STAL4855_06_GE_C08.indd 284 8/9/16 9:21 PM

8.7 / DNS-Based Authentication of Named Entities  285

Figure 8.7 shows the format of a TLSA RR as it is transmitted to a request-
ing entity. It contains four fields. The Certificate Usage field defines four different
usage models, to accommodate users who require different forms of authentication.
The usage models are:

■■ PKIX-TA (CA constraint): Specifies which CA should be trusted to authen-
ticate the certificate for the service. This usage model limits which CA can be
used to issue certificates for a given service on a host. The server certificate
chain must pass PKIX validation that terminates with a trusted root certificate
stored in the client.

■■ PKIX-EE (service certificate constraint): Defines which specific end entity
service certificate should be trusted for the service. This usage model limits
which end entity certificate can be used by a given service on a host. The server
certificate chain must pass PKIX validation that terminates with a trusted root
certificate stored in the client.

■■ DANE-TA (trust anchor assertion): Specifies a domain-operated CA to be
used as a trust anchor. This usage model allows a domain name administrator
to specify a new trust anchor—for example, if the domain issues its own certifi-
cates under its own CA that is not expected to be in the end users’ collection
of trust anchors. The server certificate chain is self-issued and does not need to
verify against a trusted root stored in the client.

■■ DANE-EE (domain-issued certificate): Specifies a domain-operated CA to
be used as a trust anchor. This certificate usage allows a domain name admin-
istrator to issue certificates for a domain without involving a third-party CA.
The server certificate chain is self-issued and does not need to verify against a
trusted root stored in the client.

The first two usage models are designed to co-exist with and strengthen
the public CA system. The final two usage models operate without the use of
public CAs.

The Selector field indicates whether the full certificate will be matched or just
the value of the public key. The match is made between the certificate presented
in TLS negotiation and the certificate in the TLSA RR. The Matching Type field
indicates how the match of the certificate is made. The options are exact match,
SHA-256 hash match, or SHA-512 hash match. The Certificate Association Data is
the raw certificate data in hex format.

Figure 8.7  TLSA RR Transmission Format

Certi�cate usage Selector Matching type

Certi�cate association data

0Bit: 318 16 24

M08_STAL4855_06_GE_C08.indd 285 8/9/16 9:21 PM

286   chapter 8 / Electronic Mail Security

Use of DANE for SMTP

DANE can be used in conjunction with SMTP over TLS, as provided by STARTTLS,
to more fully secure e-mail delivery. DANE can authenticate the certificate of the
SMTP submission server that the user’s mail client (MUA) communicates with. It
can also authenticate the TLS connections between SMTP servers (MTAs). The
use of DANE with SMTP is documented in an Internet Draft (SMTP Security via
Opportunistic DANE TLS, draft-ietf-dane-smtp-with-dane-19, May 29, 2015).

As discussed in Section 8.1, SMTP can use the STARTTLS extension to
run SMTP over TLS, so that the entire e-mail message plus SMTP envelope are
encrypted. This is done opportunistically, that is, if both sides support STARTTLS.
Even when TLS is used to provide confidentiality, it is vulnerable to attack in the
following ways:

■■ Attackers can strip away the TLS capability advertisement and downgrade the
connection to not use TLS.

■■ TLS connections are often unauthenticated (e.g., the use of self-signed certifi-
cates as well as mismatched certificates is common).

DANE can address both these vulnerabilities. A domain can use the presence
of the TLSA RR as an indicator that encryption must be performed, thus prevent-
ing malicious downgrade. A domain can authenticate the certificate used in the TLS
connection setup using a DNSSEC-signed TLSA RR.

Use of DNSSEC for S/MIME

DNSSEC can be used in conjunction with S/MIME to more fully secure e-mail
delivery, in a manner similar to the DANE functionality. This use is documented in
an Internet Draft (Using Secure DNS to Associate Certificates with Domain Names
for S/MIME, draft-ietf-dane-smime-09, August 27, 2015), which proposes a new
SMIMEA DNS RR. The purpose of the SMIMEA RR is to associate certificates
with DNS domain names.

As discussed in Section 8.4, S/MIME messages often contain certificates
that can assist in authenticating the message sender and can be used in encrypt-
ing messages sent in reply. This feature requires that the receiving MUA validate
the certificate associated with the purported sender. SMIMEA RRs can provide a
secure means of doing this validation.

In essence, the SMIMEA RR will have the same format and content as the
TLSA RR, with the same functionality. The difference is that it is geared to
the needs of MUAs in dealing with domain names as specified in e-mail addresses in
the message body, rather than domain names specified in the outer SMTP envelope.

	 8.8	S ender Policy Framework

SPF is the standardized way for a sending domain to identify and assert the mail
senders for a given domain. The problem that SPF addresses is the following: With
the current e-mail infrastructure, any host can use any domain name for each of the

M08_STAL4855_06_GE_C08.indd 286 8/9/16 9:21 PM

8.8 / Sender Policy Framework  287

various identifiers in the mail header, not just the domain name where the host is
located. Two major drawbacks of this freedom are:

■■ It is a major obstacle to reducing unsolicited bulk e-mail (UBE), also known
as spam. It makes it difficult for mail handlers to filter out e-mails on the basis
of known UBE sources.

■■ ADMDs (see Section 8.1) are understandably concerned about the ease with
which other entities can make use of their domain names, often with malicious
intent.

RFC 7208 defines the SPF. It provides a protocol by which ADMDs can
authorize hosts to use their domain names in the “MAIL FROM” or “HELO”
identities. Compliant ADMDs publish Sender Policy Framework (SPF) records in
the DNS specifying which hosts are permitted to use their names, and compliant
mail receivers use the published SPF records to test the authorization of sending
Mail Transfer Agents (MTAs) using a given “HELO” or “MAIL FROM” identity
during a mail transaction.

SPF works by checking a sender’s IP address against the policy encoded in any
SPF record found at the sending domain. The sending domain is the domain used
in the SMTP connection, not the domain indicated in the message header as dis-
played in the MUA. This means that SPF checks can be applied before the message
content is received from the sender.

Figure 8.8 is an example in which SPF would come into play. Assume that the
sender’s IP address is 192.168.0.1. The message arrives from the MTA with domain
mta.example.net. The sender uses the MAIL FROM tag of alice@example.org,
indicating that the message originates in the example.org domain. But the message
header specifies alice.sender@example.net. The receiver uses SPF to query for the
SPF RR that corresponds to example.com to check if the IP address 192.168.0.1 is

S: 220 foo.com Simple Mail Transfer Service Ready

C: HELO mta.example.net

S: 250 OK

C: MAIL FROM:<alice@example.org>

S: 250 OK

C: RCPT TO:<Jones@foo.com>

S: 250 OK

C: DATA

S: 354 Start mail input; end with <crlf>.<crlf>

C: To: bob@foo.com

C: From: alice.sender@example.net

C: Date: Today

C: Subject: Meeting Today

 . . .

Figure 8.8 � Example in which SMTP Envelope Header Does
Not Match Message Header

M08_STAL4855_06_GE_C08.indd 287 8/9/16 9:21 PM

mailto:alice@example.org
mailto:sender@example.net
mailto:alice@example.org
mailto:Jones@foo.com
mailto:bob@foo.com
mailto:sender@example.net
http://example.com
http://foo.com

288   chapter 8 / Electronic Mail Security

Tag Description

ip4 Specifies an IPv4 address or range of addresses that are authorized senders for
a domain.

ip6 Specifies an IPv6 address or range of addresses that are authorized senders for
a domain.

mx Asserts that the listed hosts for the Mail Exchange RRs are also valid senders for
the domain.

include Lists another domain where the receiver should look for an SPF RR for further
senders. This can be useful for large organizations with many domains or
sub-domains that have a single set of shared senders. The include mechanism is
recursive, in that the SPF check in the record found is tested in its entirety before
proceeding. It is not simply a concatenation of the checks.

all Matches every IP address that has not otherwise been matched.

(a) SPF Mechanisms

Modifier Description

+ The given mechanism check must pass. This is the default mechanism and does not
need to be explicitly listed.

- The given mechanism is not allowed to send e-mail on behalf of the domain.

∼ The given mechanism is in transition and if an e-mail is seen from the listed host/IP
address, then it should be accepted but marked for closer inspection.

? The SPF RR explicitly states nothing about the mechanism. In this case, the default
behavior is to accept the e-mail. (This makes it equivalent to =+ > unless some sort of
discrete or aggregate message review is conducted.)

(b) SPF Mechanism Modifiers

Table 8.7  Common SPF Mechanisms and Modifiers

listed as a valid sender, and then takes appropriate action based on the results of
checking the RR.

SPF on the Sender Side

A sending domain needs to identify all the senders for a given domain and add
that information into the DNS as a separate resource record. Next, the sending
domain encodes the appropriate policy for each sender using the SPF syntax. The
encoding is done in a TXT DNS resource record as a list of mechanisms and mod-
ifiers. Mechanisms are used to define an IP address or range of addresses to be
matched, and modifiers indicate the policy for a given match. Table 8.7 lists the
most important mechanisms and modifiers used in SPF.

The SPF syntax is fairly complex and can express complex relationships
between senders. For more detail, see RFC 7208.

SPF on the Receiver Side

If SPF is implemented at a receiver, the SPF entity uses the SMTP envelope MAIL
FROM: address domain and the IP address of the sender to query an SPF TXT RR.
The SPF checks can be started before the body of the e-mail message is received,

M08_STAL4855_06_GE_C08.indd 288 8/9/16 9:21 PM

8.9 / Domainkeys Identified Mail  289

which may result in blocking the transmission of the e-mail content. Alternatively,
the entire message can be absorbed and buffered until all the checks are finished.
In either case, checks must be completed before the mail message is sent to the end
user’s inbox.

The checking involves the following rules:

1.	 If no SPF TXT RR is returned, the default behavior is to accept the message.

2.	 If the SPF TXT RR has formatting errors, the default behavior is to accept the
message.

3.	 Otherwise the mechanisms and modifiers in the RR are used to determine
disposition of the e-mail message.

Figure 8.9 illustrates SPF operation.

	 8.9	Dom ainkeys Identified Mail

DomainKeys Identified Mail (DKIM) is a specification for cryptographically
signing e-mail messages, permitting a signing domain to claim responsibility for a
message in the mail stream. Message recipients (or agents acting in their behalf)
can verify the signature by querying the signer’s domain directly to retrieve the
appropriate public key and thereby can confirm that the message was attested to
by a party in possession of the private key for the signing domain. DKIM is an
Internet Standard (RFC 6376: DomainKeys Identified Mail (DKIM) Signatures).
DKIM has been widely adopted by a range of e-mail providers, including
corporations, government agencies, gmail, Yahoo!, and many Internet Service
Providers (ISPs).

Figure 8.9  Sender Policy Framework Operation

Sender
Inbound

mail server

SPF record
lookup

Authorization
pass/fail Further

policy
checks

Inbox

Junk e-mail

Quarantine

Block/delete

DNS

Internet

M08_STAL4855_06_GE_C08.indd 289 8/9/16 9:21 PM

290   chapter 8 / Electronic Mail Security

E-mail Threats

RFC 4686 (Analysis of Threats Motivating DomainKeys Identified Mail) describes
the threats being addressed by DKIM in terms of the characteristics, capabilities,
and location of potential attackers.

Characteristics  RFC 4686 characterizes the range of attackers on a spectrum of
three levels of threat.

1.	 At the low end are attackers who simply want to send e-mail that a recipient
does not want to receive. The attacker can use one of a number of commercially
available tools that allow the sender to falsify the origin address of messages.
This makes it difficult for the receiver to filter spam on the basis of originating
address or domain.

2.	 At the next level are professional senders of bulk spam mail. These attackers
often operate as commercial enterprises and send messages on behalf of third
parties. They employ more comprehensive tools for attack, including Mail
Transfer Agents (MTAs) and registered domains and networks of compro-
mised computers (zombies), to send messages and (in some cases) to harvest
addresses to which to send.

3.	 The most sophisticated and financially motivated senders of messages are
those who stand to receive substantial financial benefit, such as from an
e-mail-based fraud scheme. These attackers can be expected to employ all of
the above mechanisms and additionally may attack the Internet infrastructure
itself, including DNS cache-poisoning attacks and IP routing attacks.

Capabilities  RFC 4686 lists the following as capabilities that an attacker might
have.

1.	 Submit messages to MTAs and Message Submission Agents (MSAs) at
multiple locations in the Internet.

2.	 Construct arbitrary Message Header fields, including those claiming to be
mailing lists, resenders, and other mail agents.

3.	 Sign messages on behalf of domains under their control.

4.	 Generate substantial numbers of either unsigned or apparently signed
messages that might be used to attempt a denial-of-service attack.

5.	 Resend messages that may have been previously signed by the domain.

6.	 Transmit messages using any envelope information desired.

7.	 Act as an authorized submitter for messages from a compromised computer.

8.	 Manipulation of IP routing. This could be used to submit messages from
specific IP addresses or difficult-to-trace addresses, or to cause diversion of
messages to a specific domain.

9.	 Limited influence over portions of DNS using mechanisms such as cache
poisoning. This might be used to influence message routing or to falsify adver-
tisements of DNS-based keys or signing practices.

M08_STAL4855_06_GE_C08.indd 290 8/9/16 9:21 PM

8.9 / Domainkeys Identified Mail  291

10.	 Access to significant computing resources, for example, through the conscrip-
tion of worm-infected “zombie” computers. This could allow the “bad actor” to
perform various types of brute-force attacks.

11.	 Ability to eavesdrop on existing traffic, perhaps from a wireless network.

Location  DKIM focuses primarily on attackers located outside of the administra-
tive units of the claimed originator and the recipient. These administrative units
frequently correspond to the protected portions of the network adjacent to the orig-
inator and recipient. It is in this area that the trust relationships required for authen-
ticated message submission do not exist and do not scale adequately to be practical.
Conversely, within these administrative units, there are other mechanisms (such as
authenticated message submission) that are easier to deploy and more likely to be
used than DKIM. External bad actors are usually attempting to exploit the “any-to-
any” nature of e-mail that motivates most recipient MTAs to accept messages from
anywhere for delivery to their local domain. They may generate messages without
signatures, with incorrect signatures, or with correct signatures from domains with
little traceability. They may also pose as mailing lists, greeting cards, or other agents
that legitimately send or resend messages on behalf of others.

DKIM Strategy

DKIM is designed to provide an e-mail authentication technique that is transparent
to the end user. In essence, a user’s e-mail message is signed by a private key of the
administrative domain from which the e-mail originates. The signature covers all of
the content of the message and some of the RFC 5322 message headers. At the
receiving end, the MDA can access the corresponding public key via a DNS and
verify the signature, thus authenticating that the message comes from the claimed
administrative domain. Thus, mail that originates from somewhere else but claims
to come from a given domain will not pass the authentication test and can be
rejected. This approach differs from that of S/MIME and PGP, which use the origi-
nator’s private key to sign the content of the message. The motivation for DKIM is
based on the following reasoning:2

1.	 S/MIME depends on both the sending and receiving users employing S/MIME.
For almost all users, the bulk of incoming mail does not use S/MIME, and the
bulk of the mail the user wants to send is to recipients not using S/MIME.

2.	 S/MIME signs only the message content. Thus, RFC 5322 header information
concerning origin can be compromised.

3.	 DKIM is not implemented in client programs (MUAs) and is therefore trans-
parent to the user; the user need not take any action.

4.	 DKIM applies to all mail from cooperating domains.

5.	 DKIM allows good senders to prove that they did send a particular message
and to prevent forgers from masquerading as good senders.

2 The reasoning is expressed in terms of the use of S/MIME. The same argument applies to PGP.

M08_STAL4855_06_GE_C08.indd 291 8/9/16 9:21 PM

292   chapter 8 / Electronic Mail Security

Figure 8.10  Simple Example of DKIM Deployment

Mail origination
network

Mail delivery
network

DNS Public key query/response

DNS = Domain Name System
MDA = Mail Delivery Agent
MSA = Mail Submission Agent
MTA = Message Transfer Agent
MUA = Message User Agent

SMTP

MUA

MUA

SMTP

SMTP

Signer Veri�er

SMTP
POP, IMAP

M
T

A
M

SA

M
T

A
M

D
A

D
N

S

Figure 8.10 is a simple example of the operation of DKIM. We begin with a
message generated by a user and transmitted into the MHS to an MSA that is within
the user’s administrative domain. An e-mail message is generated by an e-mail cli-
ent program. The content of the message, plus selected RFC 5322 headers, is signed
by the e-mail provider using the provider’s private key. The signer is associated
with a domain, which could be a corporate local network, an ISP, or a public e-mail
facility such as gmail. The signed message then passes through the Internet via a
sequence of MTAs. At the destination, the MDA retrieves the public key for the
incoming signature and verifies the signature before passing the message on to the
destination e-mail client. The default signing algorithm is RSA with SHA-256. RSA
with SHA-1 also may be used.

DKIM Functional Flow

Figure 8.11 provides a more detailed look at the elements of DKIM operation.
Basic message processing is divided between a signing Administrative Management
Domain (ADMD) and a verifying ADMD. At its simplest, this is between the origi-
nating ADMD and the delivering ADMD, but it can involve other ADMDs in the
handling path.

Signing is performed by an authorized module within the signing ADMD
and uses private information from a Key Store. Within the originating ADMD,

M08_STAL4855_06_GE_C08.indd 292 8/9/16 9:21 PM

8.9 / Domainkeys Identified Mail  293

this might be performed by the MUA, MSA, or an MTA. Verifying is performed
by an authorized module within the verifying ADMD. Within a delivering
ADMD, verifying might be performed by an MTA, MDA or MUA. The mod-
ule verifies the signature or determines whether a particular signature was
required. Verifying the signature uses public information from the Key Store.
If the signature passes, reputation information is used to assess the signer and
that information is passed to the message filtering system. If the signature fails
or there is no signature using the author’s domain, information about signing
practices related to the author can be retrieved remotely and/or locally, and that
information is passed to the message filtering system. For example, if the sender
(e.g., gmail) uses DKIM but no DKIM signature is present, then the message
may be considered fraudulent.

Figure 8.11  DKIM Functional Flow

Originating or relaying ADMD:
Sign message with SDID

RFC 5322 message

yes

pass fail

no

Relaying or delivering ADMD:
Message signed?

Verify
signature

Private
key

store

(paired)

Public
key

store

Remote
sender

practices

Local info
on sender
practices

Reputation/
accreditation
information

Assessments

Message
�ltering
engine

Check
signing

practices

Internet

M08_STAL4855_06_GE_C08.indd 293 8/9/16 9:21 PM

294   chapter 8 / Electronic Mail Security

The signature is inserted into the RFC 5322 message as an additional header
entry, starting with the keyword Dkim-Signature. You can view examples from your
own incoming mail by using the View Long Headers (or similar wording) option for
an incoming message. Here is an example:

Dkim-Signature:	 v=1; a=rsa-sha256; c=relaxed/relaxed;
		 d=gmail.com; s=gamma; h=domainkey-
		 signature:mime-version:received:date:
		 message-id:subject :from:to:content-type:
		 content-transfer-encoding;
		 bh=5mZvQDyCRuyLb1Y28K4zgS2MPOemFToDBgvbJ
		 7GO90s=;
		� b=PcUvPSDygb4ya5Dyj1rbZGp/VyRiScuaz7TTG

J5qW5slM+klzv6kcfYdGDHzEVJW+Z
		 FetuPfF1ETOVhELtwH0zjSccOyPkEiblOf6gILO
		 bm3DDRm3Ys1/FVrbhVOlA+/jH9Aei
		 uIIw/5iFnRbSH6qPDVv/beDQqAWQfA/wF7O5k=

Before a message is signed, a process known as canonicalization is performed
on both the header and body of the RFC 5322 message. Canonicalization is necessary
to deal with the possibility of minor changes in the message made en route, includ-
ing character encoding, treatment of trailing white space in message lines, and the
“folding” and “unfolding” of header lines. The intent of canonicalization is to make a
minimal transformation of the message (for the purpose of signing; the message itself
is not changed, so the canonicalization must be performed again by the verifier) that
will give it its best chance of producing the same canonical value at the receiving end.
DKIM defines two header canonicalization algorithms (“simple” and “relaxed”) and
two for the body (with the same names). The simple algorithm tolerates almost no
modification, while the relaxed algorithm tolerates common modifications.

The signature includes a number of fields. Each field begins with a tag consist-
ing of a tag code followed by an equals sign and ends with a semicolon. The fields
include the following:

■■ v= DKIM version/

■■ a= Algorithm used to generate the signature; must be either rsa-sha1 or
rsa-sha256

■■ c= Canonicalization method used on the header and the body.

■■ d= A domain name used as an identifier to refer to the identity of a responsible
person or organization. In DKIM, this identifier is called the Signing Domain
IDentifier (SDID). In our example, this field indicates that the sender is using
a gmail address.

■■ s= In order that different keys may be used in different circumstances for the
same signing domain (allowing expiration of old keys, separate departmen-
tal signing, or the like), DKIM defines a selector (a name associated with a
key) that is used by the verifier to retrieve the proper key during signature
verification.

M08_STAL4855_06_GE_C08.indd 294 8/9/16 9:21 PM

http://gmail.com

8.10 / Domain-Based Message Authentication  295

■■ h= Signed Header fields. A colon-separated list of header field names that
identify the header fields presented to the signing algorithm. Note that in our
example above, the signature covers the domainkey-signature field. This refers
to an older algorithm (since replaced by DKIM) that is still in use.

■■ bh= The hash of the canonicalized body part of the message. This provides
additional information for diagnosing signature verification failures.

■■ b= The signature data in base64 format; this is the encrypted hash code.

	 8.10	�Domain-Based Message Authentication,
Reporting, and Conformance

Domain-Based Message Authentication, Reporting, and Conformance (DMARC)
allows e-mail senders to specify policy on how their mail should be handled, the
types of reports that receivers can send back, and the frequency those reports
should be sent. It is defined in RFC 7489 (Domain-based Message Authentication,
Reporting, and Conformance, March 2015).

DMARC works with SPF and DKIM. SPF and DKM enable senders to advise
receivers, via DNS, whether mail purporting to come from the sender is valid, and
whether it should be delivered, flagged, or discarded. However, neither SPF nor
DKIM include a mechanism to tell receivers if SPF or DKIM are in use, nor do they
have feedback mechanism to inform senders of the effectiveness of the anti-spam
techniques. For example, if a message arrives at a receiver without a DKIM signa-
ture, DKIM provides no mechanism to allow the receiver to learn if the message is
authentic but was sent from a sender that did not implement DKIM, or if the mes-
sage is a spoof. DMARC addresses these issues essentially by standardizing how
e-mail receivers perform e-mail authentication using SPF and DKIM mechanisms.

Identifier Alignment

DKIM, SPF, and DMARC authenticate various aspects of an individual mes-
sage. DKIM authenticates the domain that affixed a signature to the message. SPF
focuses on the SMTP envelope, defined in RFC 5321. It can authenticate either the
domain that appears in the MAIL FROM portion of the SMTP envelope or the
HELO domain, or both. These may be different domains, and they are typically not
visible to the end user.

DMARC authentication deals with the From domain in the message header,
as defined in RFC 5322. This field is used as the central identity of the DMARC
mechanism because it is a required message header field and therefore guaranteed
to be present in compliant messages, and most MUAs represent the RFC 5322
From field as the originator of the message and render some or all of this header
field’s content to end users. The e-mail address in this field is the one used by end
users to identify the source of the message and therefore is a prime target for abuse.

DMARC requires that From address match (be aligned with) an Authenticated
Identifier from DKIM or SPF. In the case of DKIM, the match is made between
the DKIM signing domain and the From domain. In the case of SPF, the match is
between the SPF-authenticated domain and the From domain.

M08_STAL4855_06_GE_C08.indd 295 8/9/16 9:21 PM

296   chapter 8 / Electronic Mail Security

DMARC on the Sender Side

A mail sender that uses DMARC must also use SPF or DKIM, or both. The sender
posts a DMARC policy in the DNS that advises receivers on how to treat messages
that purport to originate from the sender’s domain. The policy is in the form of
a DNS TXT resource record. The sender also needs to establish e-mail addresses
to receive aggregate and forensic reports. As these e-mail addresses are published
unencrypted in the DNS TXT RR, they are easily discovered, leaving the poster
subject to unsolicited bulk e-mail. Thus, the poster of the DNS TXT RR needs to
employ some kind of abuse countermeasures.

Similar to SPF and DKIM, the DMARC policy in the TXT RR is encoded
in a series of tag=value pairs separated by semicolons. Table 8.8 describes the
common tags.

Once the DMARC RR is posted, messages from the sender are typically
processed as follows:

1.	 The domain owner constructs an SPF policy and publishes it in its DNS
database. The domain owner also configures its system for DKIM signing.
Finally, the domain owner publishes via the DNS a DMARC message-handling
policy.

2.	 The author generates a message and hands the message to the domain owner’s
designated mail submission service.

3.	 The submission service passes relevant details to the DKIM signing module in
order to generate a DKIM signature to be applied to the message.

4.	 The submission service relays the now-signed message to its designated trans-
port service for routing to its intended recipient(s).

DMARC on the Receiver Side

A message generated on the sender side may pass through other relays but even-
tually arrives at a receiver’s transport service. The typical processing order for
DMARC on the receiving side is the following:

1.	 The receiver performs standard validation tests, such as checking against IP
blocklists and domain reputation lists, as well as enforcing rate limits from a
particular source.

2.	 The receiver extracts the RFC 5322 From address from the message. This must
contain a single, valid address or else the mail is refused as an error.

3.	 The receiver queries for the DMARC DNS record based on the sending
domain. If none exists, terminate DMARC processing.

4.	 The receiver performs DKIM signature checks. If more than one DKIM signa-
ture exists in the message, one must verify.

5.	 The receiver queries for the sending domain’s SPF record and performs SPF
validation checks.

6.	 The receiver conducts Identifier Alignment checks between the RFC 5321
From and the results of the SPF and DKIM records (if present).

M08_STAL4855_06_GE_C08.indd 296 8/9/16 9:21 PM

8.10 / Domain-Based Message Authentication  297

Tag (Name) Description

v= (Version) Version field that must be present as the first element. By default the value is
always DMARC1.

p= (Policy) Mandatory policy field. May take values none or quarantine or reject. This
allows for a gradually tightening policy where the sender domain recommends
no specific action on mail that fails DMARC checks (p= none), through treating
failed mail as suspicious (p= quarantine), to rejecting all failed mail
(p= reject), preferably at the SMTP transaction stage.

aspf= (SPF Policy) Values are r (default) for relaxed and s for strict SPF domain enforcement. Strict
alignment requires an exact match between the From address domain and the
(passing) SPF check must exactly match the MailFrom address (HELO address).
Relaxed requires that only the From and MailFrom address domains be in
alignment. For example, the MailFrom address domain smtp.example.org and the
From address announce@example.org are in alignment, but not a strict match.

adkim= (DKIM
Policy)

Optional. Values are r (default) for relaxed and s for strict DKIM domain
enforcement. Strict alignment requires an exact match between the From
domain in the message header and the DKIM domain presented in the
(d= DKIM), tag. Relaxed requires only that the domain part is in alignment
(as in aspf).

fo= (Failure reporting
options)

Optional. Ignore if a ruf argument is not also present. Value 0 indicates the
receiver should generate a DMARC failure report if all underlying mechanisms
fail to produce an aligned pass result. Value 1 means generate a DMARC failure
report if any underlying mechanism produces something other than an aligned
pass result. Other possible values are d (generate a DKIM failure report if a
signature failed evaluation), and s (generate an SPF failure report if the message
failed SPF evaluation). These values are not exclusive and may be combined.

ruf= Optional, but requires the fo argument to be present. Lists a series of URIs
(currently just mailto:<emailaddress>) that list where to send forensic feedback
reports. This is for reports on message-specific failures.

rua= Optional list of URIs (like in ruf= , using the mailto: URI) listing where to
send aggregate feedback back to the sender. These reports are sent based on the
interval requested using the ri= option with a default of 86400 seconds if not
listed.

ri= (Reporting interval) Optional with the default value of 86400 seconds. The value listed is the
reporting interval desired by the sender.

pct= (Percent) Optional with the default value of 100. Expresses the percentage of a sender’s
mail that should be subject to the given DMARC policy. This allows senders to
ramp up their policy enforcement gradually and prevent having to commit to a
rigorous policy before getting feedback on their existing policy.

sp= (Receiver Policy) Optional with a default value of none. Other values include the same range
of values as the p= argument. This is the policy to be applied to mail from all
identified subdomains of the given DMARC RR.

Table 8.8  DMARC Tag and Value Descriptions

7.	 The results of these steps are passed to the DMARC module along with the Author’s
domain. The DMARC module attempts to retrieve a policy from the DNS for
that domain. If none is found, the DMARC module determines the organizational
domain and repeats the attempt to retrieve a policy from the DNS.

8.	 If a policy is found, it is combined with the Author’s domain and the SPF and
DKIM results to produce a DMARC policy result (a “pass” or “fail”) and can
optionally cause one of two kinds of reports to be generated.

M08_STAL4855_06_GE_C08.indd 297 8/9/16 9:21 PM

mailto:announce@example.org

298   chapter 8 / Electronic Mail Security

Figure 8.12  DMARC Functional Flow

DKIM

DKIM

SPF SPF

Failure
report

Block

Pass

Sender Receiver

Fail

Quaran-
tine

Author composes
and sends e-mail

Standard processing
(including antispam)

Sending mail server
attaches DKIM signature

Standard validation
tests at receiver
(including IP

blocklists,
reputation, rate

limits, etc)

Retrieve veri�ed
DKIM domains

Retrieve
“envelope from”

via SPF

Update periodic
aggregate report

to be sent to sender

Apply
DMARC

policy

9.	 Recipient transport service either delivers the message to the recipient inbox
or takes other local policy action based on the DMARC result.

10.	 When requested, Recipient transport service collects data from the message
delivery session to be used in providing feedback.

Figure 8.12, based on one at DMARC.org, summarizes the sending and
receiving functional flow.

M08_STAL4855_06_GE_C08.indd 298 8/9/16 9:21 PM

8.10 / Domain-Based Message Authentication  299

DMARC Reports

DMARC reporting provides the sender’s feedback on their SPF, DKIM, Identifier
Alignment, and message disposition policies, which enable the sender to make
these policies more effective. Two types of reports are sent: aggregate reports and
forensic reports.

Aggregate reports are sent by receivers periodically and include aggregate
figures for successful and unsuccessful message authentications, including:

■■ The sender’s DMARC policy for that interval.

■■ The message disposition by the receiver (i.e., delivered, quarantined, rejected).

■■ SPF result for a given SPF identifier.

■■ DKIM result for a given DKIM identifier.

■■ Whether identifiers are in alignment or not.

■■ Results classified by sender subdomain.

■■ The sending and receiving domain pair.

■■ The policy applied, and whether this is different from the policy requested.

■■ The number of successful authentications.

■■ Totals for all messages received.

This information enables the sender to identify gaps in e-mail infrastruc-
ture and policy. SP 800-177 recommends that a sending domain begin by setting
a DMARC policy of p= none, so that the ultimate disposition of a message that
fails some check is determined by the receiver’s local policy. As DMARC aggregate
reports are collected, the sender will have a quantitatively better assessment of the
extent to which the sender’s e-mail is authenticated by outside receivers, and will
be able to set a policy of p  =  reject, indicating that any message that fails the
SPF, DKIM, and alignment checks really should be rejected. From their own traffic
analysis, receivers can develop a determination of whether a sender’s p  =  reject
policy is sufficiently trustworthy to act on.

A forensic report helps the sender refine the component SPF and DKIM
mechanisms as well as alerting the sender that their domain is being used as part
of a phishing/spam campaign. Forensic reports are similar in format to aggregation
reports, with these changes:

■■ Receivers include as much of the message and message header as is reason-
able to allow the domain to investigate the failure. Add an Identity-Alignment
field, with DKIM and SPF DMARC-method fields as appropriate.

■■ Optionally add a Delivery-Result field.

■■ Add DKIM Domain, DKIM Identity, and DKIM selector fields, if the message
was DKIM signed. Optionally also add DKIM Canonical header and body
fields.

■■ Add an additional DMARC authentication failure type, for use when some
authentication mechanisms fail to produce aligned identifiers.

M08_STAL4855_06_GE_C08.indd 299 8/9/16 9:21 PM

300   chapter 8 / Electronic Mail Security

	 8.11 Key Terms, Review Questions, and Problems

Key Terms

administrative management
domain (ADMD)

base64
Cryptographic Message

Syntax (CMS)
detached signature
DNS-based Authentication of

Named Entities (DANE)
DNS Security Extensions

(DNSSEC)
Domain-based Message

Authentication, Reporting,
and Conformance
(DMARC)

Domain Name System (DNS)
DomainKeys Identified Mail

(DKIM)
electronic mail
Internet Mail Access Protocol

(IMAP)
Mail Delivery Agent (MDA)
Mail Submission Agent

(MSA)
Message Handling Service

(MHS)
Message Store
Message Transfer Agents

(MTA)

Message User Agent (MUA)
Multipurpose Internet Mail

Extensions (MIME)
Post Office Protocol (POP3)
Pretty Good Privacy (PGP)
Sender Policy Framework

(SPF)
session key
Simple Mail Transfer Protocol

(SMTP)
STARTTLS
SUBMISSION
S/MIME
trust

Review Questions
	 8.1	 What types of interoperability issues are involved in internet mail architecture and

how are they handled?
	 8.2	 What are the SMTP and MIME standards?
	 8.3	 What is the difference between a MIME content type and a MIME transfer encoding?
	 8.4	 Briefly explain base64 encoding.
	 8.5	 Why is base64 conversion useful for an e-mail application?
	 8.6	 What is S/MIME?
	 8.7	 What are the four principal services provided by S/MIME?
	 8.8	 What is the utility of a detached signature?
	 8.9	 What is DKIM?

Problems
	 8.1	 The character sequence “<CR><LF>.<CR><LF>” indicates the end of mail data to a

SMTP-server. What happens if the mail data itself contains that character sequence?
	 8.2	 What are POP3 and IMAP?
	 8.3	 If a lossless compression algorithm, such as ZIP, is used with S/MIME, why is it pref-

erable to generate a signature before applying compression?
	 8.4	 Before the deployment of the Domain Name System, a simple text file (HOSTS.

TXT) centrally maintained at the SRI Network Information Center was used to
enable mapping between host names and addresses. Each host connected to the
Internet had to have an updated local copy of it to be able to use host names instead
of having to cope directly with their IP addresses. Discuss the main advantages of the
DNS over the old centralized HOSTS.TXT system.

	 8.5	 For this problem and the next few, consult Appendix H. In Figure H.2, each entry in
the public-key ring contains an Owner Trust field that indicates the degree of trust
associated with this public-key owner. Why is that not enough? That is, if this owner
is trusted and this is supposed to be the owner’s public key, why is that trust not
enough to permit PGP to use this public key?

M08_STAL4855_06_GE_C08.indd 300 8/9/16 9:21 PM

8.11 / Key Terms, Review Questions, and Problems  301

	 8.6	 What is the basic difference between X.509 and PGP in terms of key hierarchies and
key trust?

	 8.7	 In PGP, what is the expected number of session keys generated before a previously
created key is produced?

	 8.8	 A PGP user may have multiple public keys. So that a recipient knows which public
key is being used by a sender, a key ID, consisting of the least significant 64 bits of the
public key, is sent with the message. What is the probability that a user with N public
keys will have at least one duplicate key ID?

	 8.9	 The first 16 bits of the message digest in a PGP signature are translated in the clear.
This enables the recipient to determine if the correct public key was used to decrypt
the message digest by comparing this plaintext copy of the first two octets with the
first two octets of the decrypted digest.
a.	 To what extent does this compromise the security of the hash algorithm?
b.	 To what extent does it in fact perform its intended function, namely, to help deter-

mine if the correct RSA key was used to decrypt the digest?
	 8.10	 Consider base64 conversion as a form of encryption. In this case, there is no key. But

suppose that an opponent knew only that some form of substitution algorithm was
being used to encrypt English text and did not guess that it was base64. How effective
would this algorithm be against cryptanalysis?

	 8.11	 Encode the text “ciphertext” using the following techniques. Assume characters are
stored in 8-bit ASCII with zero parity.
a.	 base64
b.	 Quoted-printable

	 8.12	 Use a 2 * 2 matrix to categorize the properties of the four certificate usage models in
DANE.

M08_STAL4855_06_GE_C08.indd 301 8/9/16 9:21 PM

302302

IP Security

Chapter

9.1	 IP Security Overview

Applications of IPsec
Benefits of IPsec
Routing Applications
IPsec Documents
IPsec Services
Transport and Tunnel Modes

9.2	 IP Security Policy

Security Associations
Security Association Database
Security Policy Database
IP Traffic Processing

9.3	 Encapsulating Security Payload

ESP Format
Encryption and Authentication Algorithms
Padding
Anti-Replay Service
Transport and Tunnel Modes

9.4	 Combining Security Associations

Authentication Plus Confidentiality
Basic Combinations of Security Associations

9.5	 Internet Key Exchange

Key Determination Protocol
Header and Payload Formats

9.6	 Cryptographic Suites

9.7	 Key Terms, Review Questions, and Problems

M09_STAL4855_06_GE_C09.indd 302 8/9/16 9:34 PM

9.1 / Ip Security Overview  303

There are application-specific security mechanisms for a number of application
areas, including electronic mail (S/MIME, PGP), client/server (Kerberos), Web
access (Secure Sockets Layer), and others. However, users have security concerns
that cut across protocol layers. For example, an enterprise can run a secure, private
IP network by disallowing links to untrusted sites, encrypting packets that leave
the premises, and authenticating packets that enter the premises. By implementing
security at the IP level, an organization can ensure secure networking not only for
applications that have security mechanisms but also for the many security-ignorant
applications.

IP-level security encompasses three functional areas: authentication, confiden-
tiality, and key management. The authentication mechanism assures that a received
packet was, in fact, transmitted by the party identified as the source in the packet
header. In addition, this mechanism assures that the packet has not been altered in
transit. The confidentiality facility enables communicating nodes to encrypt messages
to prevent eavesdropping by third parties. The key management facility is concerned
with the secure exchange of keys.

We begin this chapter with an overview of IP security (IPsec) and an introduc-
tion to the IPsec architecture. We then look at each of the three functional areas in
detail. Appendix D reviews Internet protocols.

	 9.1	 Ip Security Overview

In 1994, the Internet Architecture Board (IAB) issued a report titled “Security in
the Internet Architecture” (RFC 1636). The report identified key areas for security
mechanisms. Among these were the need to secure the network infrastructure from

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Present an overview of IP security (IPsec).

◆◆ Explain the difference between transport mode and tunnel mode.

◆◆ Understand the concept of security association.

◆◆ Explain the difference between the security association database and the
security policy database.

◆◆ Summarize the traffic processing functions performed by IPsec for out-
bound packets and for inbound packets.

◆◆ Present an overview of Encapsulating Security Payload.

◆◆ Discuss the alternatives for combining security associations.

◆◆ Present an overview of Internet Key Exchange.

◆◆ Summarize the alternative cryptographic suites approved for use with IPsec.

M09_STAL4855_06_GE_C09.indd 303 8/9/16 9:34 PM

304   chapter 9 / IP Security

unauthorized monitoring and control of network traffic and the need to secure end-
user-to-end-user traffic using authentication and encryption mechanisms.

To provide security, the IAB included authentication and encryption as nec-
essary security features in the next-generation IP, which has been issued as IPv6.
Fortunately, these security capabilities were designed to be usable both with the
current IPv4 and the future IPv6. This means that vendors can begin offering these
features now, and many vendors now do have some IPsec capability in their prod-
ucts. The IPsec specification now exists as a set of Internet standards.

Applications of IPsec

IPsec provides the capability to secure communications across a LAN, across pri-
vate and public WANs, and across the Internet. Examples of its use include:

■■ Secure branch office connectivity over the Internet: A company can build a
secure virtual private network over the Internet or over a public WAN. This
enables a business to rely heavily on the Internet and reduce its need for pri-
vate networks, saving costs and network management overhead.

■■ Secure remote access over the Internet: An end user whose system is equipped
with IP security protocols can make a local call to an Internet Service Provider
(ISP) and gain secure access to a company network. This reduces the cost of
toll charges for traveling employees and telecommuters.

■■ Establishing extranet and intranet connectivity with partners: IPsec can be
used to secure communication with other organizations, ensuring authentica-
tion and confidentiality and providing a key exchange mechanism.

■■ Enhancing electronic commerce security: Even though some Web and elec-
tronic commerce applications have built-in security protocols, the use of IPsec
enhances that security. IPsec guarantees that all traffic designated by the net-
work administrator is both encrypted and authenticated, adding an additional
layer of security to whatever is provided at the application layer.

The principal feature of IPsec that enables it to support these varied applica-
tions is that it can encrypt and/or authenticate all traffic at the IP level. Thus, all dis-
tributed applications (including remote logon, client/server, e-mail, file transfer, Web
access, and so on) can be secured. Figure 9.1a shows a simplified packet format for
an IPsec option known as tunnel mode, described subsequently. Tunnel mode makes
use of an IPsec function, a combined authentication/encryption function called
Encapsulating Security Payload (ESP), and a key exchange function. For VPNs,
both authentication and encryption are generally desired, because it is important
both to (1) assure that unauthorized users do not penetrate the VPN, and (2) assure
that eavesdroppers on the Internet cannot read messages sent over the VPN.

Figure 9.1b is a typical scenario of IPsec usage. An organization maintains
LANs at dispersed locations. Nonsecure IP traffic is conducted on each LAN. For
traffic offsite, through some sort of private or public WAN, IPsec protocols are used.
These protocols operate in networking devices, such as a router or firewall, that
connect each LAN to the outside world. The IPsec networking device will typically
encrypt all traffic going into the WAN and decrypt traffic coming from the WAN;
these operations are transparent to workstations and servers on the LAN. Secure

M09_STAL4855_06_GE_C09.indd 304 8/9/16 9:34 PM

9.1 / Ip Security Overview  305

transmission is also possible with individual users who dial into the WAN. Such user
workstations must implement the IPsec protocols to provide security.

Benefits of IPsec

Some of the benefits of IPsec:

■■ When IPsec is implemented in a firewall or router, it provides strong security
that can be applied to all traffic crossing the perimeter. Traffic within a com-
pany or workgroup does not incur the overhead of security-related processing.

Figure 9.1  An IPSec VPN Scenario

Networking device
with IPSec

Ethernet
switch

Unprotected
IP tra�c

Legend:

User system
with IPSec

(a) Tunnel-mode format

(b) Example con
guration

Public (Internet)
or private
network

Authenticated

Encrypted

ESP
auth

orig IP
hdr IP payload ESP

trlr
ESP
hdr

IP tra�c
protected
by IPSec

Virtual tunnel:
protected
by IPSec

New IP
hdr

M09_STAL4855_06_GE_C09.indd 305 8/9/16 9:34 PM

306   chapter 9 / IP Security

■■ IPsec in a firewall is resistant to bypass if all traffic from the outside must use
IP and the firewall is the only means of entrance from the Internet into the
organization.

■■ IPsec is below the transport layer (TCP, UDP) and so is transparent to appli-
cations. There is no need to change software on a user or server system when
IPsec is implemented in the firewall or router. Even if IPsec is implemented in
end systems, upper-layer software, including applications, is not affected.

■■ IPsec can be transparent to end users. There is no need to train users on secu-
rity mechanisms, issue keying material on a per-user basis, or revoke keying
material when users leave the organization.

■■ IPsec can provide security for individual users if needed. This is useful for off-
site workers and for setting up a secure virtual subnetwork within an organiza-
tion for sensitive applications.

Routing Applications

In addition to supporting end users and protecting premises systems and networks,
IPsec can play a vital role in the routing architecture required for internetworking.
[HUIT98] lists the following examples of the use of IPsec. IPsec can assure that

■■ A router advertisement (a new router advertises its presence) comes from an
authorized router.

■■ A neighbor advertisement (a router seeks to establish or maintain a neighbor
relationship with a router in another routing domain) comes from an autho-
rized router.

■■ A redirect message comes from the router to which the initial IP packet was sent.

■■ A routing update is not forged.

Without such security measures, an opponent can disrupt communications
or divert some traffic. Routing protocols such as Open Shortest Path First (OSPF)
should be run on top of security associations between routers that are defined by
IPsec.

IPsec Documents

IPsec encompasses three functional areas: authentication, confidentiality, and key
management. The totality of the IPsec specification is scattered across dozens of
RFCs and draft IETF documents, making this the most complex and difficult to
grasp of all IETF specifications. The best way to grasp the scope of IPsec is to
consult the latest version of the IPsec document roadmap, which as of this writ-
ing is RFC 6071 (IP Security (IPsec) and Internet Key Exchange (IKE) Document
Roadmap, February 2011). The documents can be categorized into the following
groups.

■■ Architecture: Covers the general concepts, security requirements, definitions,
and mechanisms defining IPsec technology. The current specification is RFC
4301, Security Architecture for the Internet Protocol.

M09_STAL4855_06_GE_C09.indd 306 8/9/16 9:34 PM

9.1 / Ip Security Overview  307

■■ Authentication Header (AH): AH is an extension header to provide mes-
sage authentication. The current specification is RFC 4302, IP Authentication
Header. Because message authentication is provided by ESP, the use of
AH is deprecated. It is included in IPsecv3 for backward compatibility
but should not be used in new applications. We do not discuss AH in this
chapter.

■■ Encapsulating Security Payload (ESP): ESP consists of an encapsulat-
ing header and trailer used to provide encryption or combined encryption/
authentication. The current specification is RFC 4303, IP Encapsulating
Security Payload (ESP).

■■ Internet Key Exchange (IKE): This is a collection of documents describing
the key management schemes for use with IPsec. The main specification is
RFC 7296, Internet Key Exchange (IKEv2) Protocol, but there are a number
of related RFCs.

■■ Cryptographic algorithms: This category encompasses a large set of docu-
ments that define and describe cryptographic algorithms for encryption, mes-
sage authentication, pseudorandom functions (PRFs), and cryptographic key
exchange.

■■ Other: There are a variety of other IPsec-related RFCs, including those deal-
ing with security policy and management information base (MIB) content.

IPsec Services

IPsec provides security services at the IP layer by enabling a system to select
required security protocols, determine the algorithm(s) to use for the service(s),
and put in place any cryptographic keys required to provide the requested services.
Two protocols are used to provide security: an authentication protocol designated
by the header of the protocol, Authentication Header (AH); and a combined
encryption/authentication protocol designated by the format of the packet for
that protocol, Encapsulating Security Payload (ESP). RFC 4301 lists the following
services:

■■ Access control

■■ Connectionless integrity

■■ Data origin authentication

■■ Rejection of replayed packets (a form of partial sequence integrity)

■■ Confidentiality (encryption)

■■ Limited traffic flow confidentiality

Transport and Tunnel Modes

Both AH and ESP support two modes of use: transport and tunnel mode. The oper-
ation of these two modes is best understood in the context of a description of ESP,
which is covered in Section 9.3. Here we provide a brief overview.

M09_STAL4855_06_GE_C09.indd 307 8/9/16 9:34 PM

308   chapter 9 / IP Security

Transport Mode  Transport mode provides protection primarily for upper-layer
protocols. That is, transport mode protection extends to the payload of an IP
packet.1 Examples include a TCP or UDP segment or an ICMP packet, all of which
operate directly above IP in a host protocol stack. Typically, transport mode is used
for end-to-end communication between two hosts (e.g., a client and a server, or two
workstations). When a host runs AH or ESP over IPv4, the payload is the data that
normally follow the IP header. For IPv6, the payload is the data that normally fol-
low both the IP header and any IPv6 extensions headers that are present, with the
possible exception of the destination options header, which may be included in the
protection.

ESP in transport mode encrypts and optionally authenticates the IP payload
but not the IP header. AH in transport mode authenticates the IP payload and
selected portions of the IP header.

Tunnel Mode  Tunnel mode provides protection to the entire IP packet. To achieve
this, after the AH or ESP fields are added to the IP packet, the entire packet plus
security fields is treated as the payload of new outer IP packet with a new outer
IP header. The entire original, inner, packet travels through a tunnel from one
point of an IP network to another; no routers along the way are able to examine
the inner IP header. Because the original packet is encapsulated, the new, larger
packet may have totally different source and destination addresses, adding to the
security. Tunnel mode is used when one or both ends of a security association (SA)
are a security gateway, such as a firewall or router that implements IPsec. With tun-
nel mode, a number of hosts on networks behind firewalls may engage in secure
communications without implementing IPsec. The unprotected packets generated
by such hosts are tunneled through external networks by tunnel mode SAs set up
by the IPsec software in the firewall or secure router at the boundary of the local
network.

Here is an example of how tunnel mode IPsec operates. Host A on a network
generates an IP packet with the destination address of host B on another network.
This packet is routed from the originating host to a firewall or secure router at the
boundary of A’s network. The firewall filters all outgoing packets to determine the
need for IPsec processing. If this packet from A to B requires IPsec, the firewall
performs IPsec processing and encapsulates the packet with an outer IP header.
The source IP address of this outer IP packet is this firewall, and the destination
address may be a firewall that forms the boundary to B’s local network. This packet
is now routed to B’s firewall, with intermediate routers examining only the outer IP
header. At B’s firewall, the outer IP header is stripped off, and the inner packet is
delivered to B.

ESP in tunnel mode encrypts and optionally authenticates the entire inner IP
packet, including the inner IP header. AH in tunnel mode authenticates the entire
inner IP packet and selected portions of the outer IP header.

Table 9.1 summarizes transport and tunnel mode functionality.

1In this chapter, the term IP packet refers to either an IPv4 datagram or an IPv6 packet.

M09_STAL4855_06_GE_C09.indd 308 8/9/16 9:34 PM

9.2 / Ip Security Policy  309

	 9.2	 Ip Security Policy

Fundamental to the operation of IPsec is the concept of a security policy applied
to each IP packet that transits from a source to a destination. IPsec policy is
determined primarily by the interaction of two databases, the security association
database (SAD) and the security policy database (SPD). This section provides an
overview of these two databases and then summarizes their use during IPsec opera-
tion. Figure 9.2 illustrates the relevant relationships.

Security Associations

A key concept that appears in both the authentication and confidentiality mecha-
nisms for IP is the security association (SA). An association is a one-way logical
connection between a sender and a receiver that affords security services to the traf-
fic carried on it. If a peer relationship is needed for two-way secure exchange, then
two security associations are required.

A security association is uniquely identified by three parameters.

■■ Security Parameters Index (SPI): A 32-bit unsigned integer assigned to this
SA and having local significance only. The SPI is carried in AH and ESP head-
ers to enable the receiving system to select the SA under which a received
packet will be processed.

■■ IP Destination Address: This is the address of the destination endpoint of the
SA, which may be an end-user system or a network system such as a firewall
or router.

■■ Security Protocol Identifier: This field from the outer IP header indicates
whether the association is an AH or ESP security association.

Hence, in any IP packet, the security association is uniquely identified by the
Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed exten-
sion header (AH or ESP).

Transport Mode SA Tunnel Mode SA

AH Authenticates IP payload and selected
portions of IP header and IPv6
extension headers.

Authenticates entire inner IP packet (inner
header plus IP payload) plus selected portions
of outer IP header and outer IPv6 extension
headers.

ESP Encrypts IP payload and any IPv6
extension headers following the ESP
header.

Encrypts entire inner IP packet.

ESP with
Authentication

Encrypts IP payload and any IPv6
extension headers following the ESP
header. Authenticates IP payload but
not IP header.

Encrypts entire inner IP packet. Authenticates
inner IP packet.

Table 9.1  Tunnel Mode and Transport Mode Functionality

M09_STAL4855_06_GE_C09.indd 309 8/9/16 9:34 PM

310   chapter 9 / IP Security

Security Association Database

In each IPsec implementation, there is a nominal2 Security Association Database
that defines the parameters associated with each SA. A security association is nor-
mally defined by the following parameters in an SAD entry.

■■ Security Parameter Index: A 32-bit value selected by the receiving end of an
SA to uniquely identify the SA. In an SAD entry for an outbound SA, the SPI
is used to construct the packet’s AH or ESP header. In an SAD entry for an
inbound SA, the SPI is used to map traffic to the appropriate SA.

■■ Sequence Number Counter: A 32-bit value used to generate the Sequence
Number field in AH or ESP headers, described in Section 9.3 (required for all
implementations).

■■ Sequence Counter Overflow: A flag indicating whether overflow of the
Sequence Number Counter should generate an auditable event and prevent
further transmission of packets on this SA (required for all implementations).

■■ Anti-Replay Window: Used to determine whether an inbound AH or ESP
packet is a replay, described in Section 9.3 (required for all implementations).

■■ AH Information: Authentication algorithm, keys, key lifetimes, and related
parameters being used with AH (required for AH implementations).

■■ ESP Information: Encryption and authentication algorithm, keys, initialization
values, key lifetimes, and related parameters being used with ESP (required
for ESP implementations).

■■ Lifetime of this Security Association: A time interval or byte count after
which an SA must be replaced with a new SA (and new SPI) or terminated,
plus an indication of which of these actions should occur (required for all
implementations).

2Nominal in the sense that the functionality provided by a Security Association Database must be present
in any IPsec implementation, but the way in which that functionality is provided is up to the implementer.

Figure 9.2  IPsec Architecture

SPD SPD

SAD

IKEv2 IKEv2

IPsecv3 IPsecv3

Security
association
database

Key exchange

IKE SA

IPsec SA Pair

ESP protects data

Security
association
database

Security
policy

database

Security
policy

database

SAD

M09_STAL4855_06_GE_C09.indd 310 8/9/16 9:34 PM

9.2 / Ip Security Policy  311

■■ IPsec Protocol Mode: Tunnel, transport, or wildcard.

■■ Path MTU: Any observed path maximum transmission unit (maximum size of
a packet that can be transmitted without fragmentation) and aging variables
(required for all implementations).

The key management mechanism that is used to distribute keys is coupled to
the authentication and privacy mechanisms only by way of the Security Parameters
Index (SPI). Hence, authentication and privacy have been specified independent of
any specific key management mechanism.

IPsec provides the user with considerable flexibility in the way in which IPsec
services are applied to IP traffic. As we will see later, SAs can be combined in a
number of ways to yield the desired user configuration. Furthermore, IPsec pro-
vides a high degree of granularity in discriminating between traffic that is afforded
IPsec protection and traffic that is allowed to bypass IPsec, as in the former case
relating IP traffic to specific SAs.

Security Policy Database

The means by which IP traffic is related to specific SAs (or no SA in the case of traffic
allowed to bypass IPsec) is the nominal Security Policy Database (SPD). In its simplest
form, an SPD contains entries, each of which defines a subset of IP traffic and points
to an SA for that traffic. In more complex environments, there may be multiple entries
that potentially relate to a single SA or multiple SAs associated with a single SPD
entry. The reader is referred to the relevant IPsec documents for a full discussion.

Each SPD entry is defined by a set of IP and upper-layer protocol field values,
called selectors. In effect, these selectors are used to filter outgoing traffic in order
to map it into a particular SA. Outbound processing obeys the following general
sequence for each IP packet.

1.	 Compare the values of the appropriate fields in the packet (the selector fields)
against the SPD to find a matching SPD entry, which will point to zero or more SAs.

2.	 Determine the SA if any for this packet and its associated SPI.

3.	 Do the required IPsec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

■■ Remote IP Address: This may be a single IP address, an enumerated list or
range of addresses, or a wildcard (mask) address. The latter two are required to
support more than one destination system sharing the same SA (e.g., behind
a firewall).

■■ Local IP Address: This may be a single IP address, an enumerated list or range
of addresses, or a wildcard (mask) address. The latter two are required to sup-
port more than one source system sharing the same SA (e.g., behind a firewall).

■■ Next Layer Protocol: The IP protocol header (IPv4, IPv6, or IPv6 Extension)
includes a field (Protocol for IPv4, Next Header for IPv6 or IPv6 Extension)
that designates the protocol operating over IP. This is an individual protocol
number, ANY, or for IPv6 only, OPAQUE. If AH or ESP is used, then this IP
protocol header immediately precedes the AH or ESP header in the packet.

M09_STAL4855_06_GE_C09.indd 311 8/9/16 9:34 PM

312   chapter 9 / IP Security

■■ Name: A user identifier from the operating system. This is not a field in the IP
or upper-layer headers but is available if IPsec is running on the same operat-
ing system as the user.

■■ Local and Remote Ports: These may be individual TCP or UDP port values, an
enumerated list of ports, or a wildcard port.

Table 9.2 provides an example of an SPD on a host system (as opposed to
a network system such as a firewall or router). This table reflects the following
configuration: A local network configuration consists of two networks. The basic
corporate network configuration has the IP network number 1.2.3.0/24. The local
configuration also includes a secure LAN, often known as a DMZ, that is identified
as 1.2.4.0/24. The DMZ is protected from both the outside world and the rest of the
corporate LAN by firewalls. The host in this example has the IP address 1.2.3.10,
and it is authorized to connect to the server 1.2.4.10 in the DMZ.

The entries in the SPD should be self-explanatory. For example, UDP port
500 is the designated port for IKE. Any traffic from the local host to a remote host
for purposes of an IKE exchange bypasses the IPsec processing.

IP Traffic Processing

IPsec is executed on a packet-by-packet basis. When IPsec is implemented, each
outbound IP packet is processed by the IPsec logic before transmission, and each
inbound packet is processed by the IPsec logic after reception and before passing
the packet contents on to the next higher layer (e.g., TCP or UDP). We look at the
logic of these two situations in turn.

Outbound Packets  Figure 9.3 highlights the main elements of IPsec processing for
outbound traffic. A block of data from a higher layer, such as TCP, is passed down
to the IP layer and an IP packet is formed, consisting of an IP header and an IP
body. Then the following steps occur:

1.	 IPsec searches the SPD for a match to this packet.

2.	 If no match is found, then the packet is discarded and an error message is generated.

Protocol Local IP Port Remote IP Port Action Comment

UDP 1.2.3.101 500 * 500 BYPASS IKE

ICMP 1.2.3.101 * * * BYPASS Error messages

* 1.2.3.101 * 1.2.3.0/24 * PROTECT: ESP
intransport-mode

Encrypt intranet traffic

TCP 1.2.3.101 * 1.2.4.10 80 PROTECT: ESP
intransport-mode

Encrypt to server

TCP 1.2.3.101 * 1.2.4.10 443 BYPASS TLS: avoid double encryption

* 1.2.3.101 * 1.2.4.0/24 * DISCARD Others in DMZ

* 1.2.3.101 * * * BYPASS Internet

Table 9.2  Host SPD Example

M09_STAL4855_06_GE_C09.indd 312 8/9/16 9:34 PM

9.2 / Ip Security Policy  313

3.	 If a match is found, further processing is determined by the first matching
entry in the SPD. If the policy for this packet is DISCARD, then the packet is
discarded. If the policy is BYPASS, then there is no further IPsec processing;
the packet is forwarded to the network for transmission.

4.	 If the policy is PROTECT, then a search is made of the SAD for a match-
ing entry. If no entry is found, then IKE is invoked to create an SA with the
appropriate keys and an entry is made in the SA.

5.	 The matching entry in the SAD determines the processing for this packet.
Either encryption, authentication, or both can be performed, and either trans-
port or tunnel mode can be used. The packet is then forwarded to the network
for transmission.

Inbound Packets  Figure 9.4 highlights the main elements of IPsec processing for
inbound traffic. An incoming IP packet triggers the IPsec processing. The following
steps occur:

1.	 IPsec determines whether this is an unsecured IP packet or one that has ESP
or AH headers/trailers, by examining the IP Protocol field (IPv4) or Next
Header field (IPv6).

Figure 9.3  Processing Model for Outbound Packets

Search
security policy

database

Search
security association

database

Determine
policy

Outbound IP packet
(e.g., from TCP or UDP)

Discard
packet

No match
found

No match
found

Match found

Match
found

DISCARD PROTECT

BYPASS

Forward
packet via

IP

Internet
key

exchange

Process
(AH/ESP)

M09_STAL4855_06_GE_C09.indd 313 8/9/16 9:34 PM

314   chapter 9 / IP Security

2.	 If the packet is unsecured, IPsec searches the SPD for a match to this packet.
If the first matching entry has a policy of BYPASS, the IP header is processed
and stripped off and the packet body is delivered to the next higher layer, such
as TCP. If the first matching entry has a policy of PROTECT or DISCARD, or
if there is no matching entry, the packet is discarded.

3.	 For a secured packet, IPsec searches the SAD. If no match is found, the packet
is discarded. Otherwise, IPsec applies the appropriate ESP or AH processing.
Then, the IP header is processed and stripped off and the packet body is deliv-
ered to the next higher layer, such as TCP.

	 9.3	E ncapsulating Security Payload

ESP can be used to provide confidentiality, data origin authentication, connection-
less integrity, an anti-replay service (a form of partial sequence integrity), and (lim-
ited) traffic flow confidentiality. The set of services provided depends on options
selected at the time of Security Association (SA) establishment and on the location
of the implementation in a network topology.

ESP can work with a variety of encryption and authentication algorithms,
including authenticated encryption algorithms such as GCM.

ESP Format

Figure 9.5a shows the top-level format of an ESP packet. It contains the following fields.

Figure 9.4  Processing Model for Inbound Packets

Search
security policy

database

Search
security association

database

Packet
type

Inbound IP packet
(from Internet)

Discard
packet

No match
found

cesPIPI

Not
BYPASS

Match
foundBYPASS

Deliver packet
to higher layer

(e.g., TCP, UDP)

Process
(AH/ESP)

M09_STAL4855_06_GE_C09.indd 314 8/9/16 9:34 PM

9.3 / Encapsulating Security Payload  315

■■ Security Parameters Index (32 bits): Identifies a security association.

■■ Sequence Number (32 bits): A monotonically increasing counter value; this
provides an anti-replay function, as discussed for AH.

■■ Payload Data (variable): This is a transport-level segment (transport mode) or
IP packet (tunnel mode) that is protected by encryption.

■■ Padding (0–255 bytes): The purpose of this field is discussed later.

■■ Pad Length (8 bits): Indicates the number of pad bytes immediately preceding
this field.

■■ Next Header (8 bits): Identifies the type of data contained in the payload data
field by identifying the first header in that payload (e.g., an extension header
in IPv6, or an upper-layer protocol such as TCP).

■■ Integrity Check Value (variable): A variable-length field (must be an integral
number of 32-bit words) that contains the Integrity Check Value computed
over the ESP packet minus the Authentication Data field.

Figure 9.5  ESP Packet Format

Security parameters index (SPI)

32 bits

Sequence number

Padding (0–255 bytes)
Pad length Next header

Payload data (variable)

Integrity check value - ICV (variable)

IC
V

 c
ov

er
ag

e

E
nc

ry
pt

ed
E

nc
ry

pt
ed

(a) Top-level format of an ESP Packet

(b) Substructure of payload data

Security parameters index (SPI)
Sequence number

Initialization value - IV (optional)

Padding (0–255 bytes)
TFC padding (optional, variable)

Pad length Next header

Rest of payload data (variable)

Integrity check value - ICV (variable)

IC
V

 c
ov

er
ag

e

P
ay

lo
ad

M09_STAL4855_06_GE_C09.indd 315 8/9/16 9:34 PM

316   chapter 9 / IP Security

When any combined mode algorithm is employed, the algorithm itself is
expected to return both decrypted plaintext and a pass/fail indication for the integ-
rity check. For combined mode algorithms, the ICV that would normally appear
at the end of the ESP packet (when integrity is selected) may be omitted. When
the ICV is omitted and integrity is selected, it is the responsibility of the combined
mode algorithm to encode within the Payload Data an ICV-equivalent means of
verifying the integrity of the packet.

Two additional fields may be present in the payload (Figure 9.5b). An
initialization value (IV), or nonce, is present if this is required by the encryption
or authenticated encryption algorithm used for ESP. If tunnel mode is being used,
then the IPsec implementation may add traffic flow confidentiality (TFC) padding
after the Payload Data and before the Padding field, as explained subsequently.

Encryption and Authentication Algorithms

The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by
the ESP service. If the algorithm used to encrypt the payload requires cryptographic
synchronization data, such as an initialization vector (IV), then these data may be
carried explicitly at the beginning of the Payload Data field. If included, an IV is
usually not encrypted, although it is often referred to as being part of the ciphertext.

The ICV field is optional. It is present only if the integrity service is selected
and is provided by either a separate integrity algorithm or a combined mode algo-
rithm that uses an ICV. The ICV is computed after the encryption is performed.
This order of processing facilitates rapid detection and rejection of replayed or
bogus packets by the receiver prior to decrypting the packet, hence potentially re-
ducing the impact of denial of service (DoS) attacks. It also allows for the possibility
of parallel processing of packets at the receiver that is decryption can take place
in parallel with integrity checking. Note that because the ICV is not protected by
encryption, a keyed integrity algorithm must be employed to compute the ICV.

Padding

The Padding field serves several purposes:

■■ If an encryption algorithm requires the plaintext to be a multiple of some
number of bytes (e.g., the multiple of a single block for a block cipher), the
Padding field is used to expand the plaintext (consisting of the Payload Data,
Padding, Pad Length, and Next Header fields) to the required length.

■■ The ESP format requires that the Pad Length and Next Header fields be right
aligned within a 32-bit word. Equivalently, the ciphertext must be an integer
multiple of 32 bits. The Padding field is used to assure this alignment.

■■ Additional padding may be added to provide partial traffic-flow confidential-
ity by concealing the actual length of the payload.

Anti-Replay Service

A replay attack is one in which an attacker obtains a copy of an authenticated
packet and later transmits it to the intended destination. The receipt of duplicate,
authenticated IP packets may disrupt service in some way or may have some other
undesired consequence. The Sequence Number field is designed to thwart such

M09_STAL4855_06_GE_C09.indd 316 8/9/16 9:34 PM

9.3 / Encapsulating Security Payload  317

attacks. First, we discuss sequence number generation by the sender, and then we
look at how it is processed by the recipient.

When a new SA is established, the sender initializes a sequence number
counter to 0. Each time that a packet is sent on this SA, the sender increments the
counter and places the value in the Sequence Number field. Thus, the first value to
be used is 1. If anti-replay is enabled (the default), the sender must not allow the
sequence number to cycle past 232 - 1 back to zero. Otherwise, there would be mul-
tiple valid packets with the same sequence number. If the limit of 232 - 1 is reached,
the sender should terminate this SA and negotiate a new SA with a new key.

Because IP is a connectionless, unreliable service, the protocol does not guar-
antee that packets will be delivered in order and does not guarantee that all packets
will be delivered. Therefore, the IPsec authentication document dictates that the
receiver should implement a window of size W, with a default of W = 64. The right
edge of the window represents the highest sequence number, N, so far received for a
valid packet. For any packet with a sequence number in the range from N - W + 1
to N that has been correctly received (i.e., properly authenticated), the correspond-
ing slot in the window is marked (Figure 9.6). Inbound processing proceeds as fol-
lows when a packet is received:

1.	 If the received packet falls within the window and is new, the MAC is checked.
If the packet is authenticated, the corresponding slot in the window is marked.

2.	 If the received packet is to the right of the window and is new, the MAC is
checked. If the packet is authenticated, the window is advanced so that this
sequence number is the right edge of the window, and the corresponding slot
in the window is marked.

3.	 If the received packet is to the left of the window or if authentication fails, the
packet is discarded; this is an auditable event.

Transport and Tunnel Modes

Figure 9.7 shows two ways in which the IPsec ESP service can be used. In the upper
part of the figure, encryption (and optionally authentication) is provided directly
between two hosts. Figure 9.7b shows how tunnel mode operation can be used to set up
a virtual private network. In this example, an organization has four private networks

Figure 9.6  Anti-replay Mechanism

Fixed window size W

N

N + 1N – W

Marked if valid
packet received

Unmarked if valid
packet not yet received

• • •

Advance window if
valid packet to the

right is received

M09_STAL4855_06_GE_C09.indd 317 8/9/16 9:34 PM

318   chapter 9 / IP Security

interconnected across the Internet. Hosts on the internal networks use the Internet
for transport of data but do not interact with other Internet-based hosts. By termi-
nating the tunnels at the security gateway to each internal network, the configuration
allows the hosts to avoid implementing the security capability. The former technique is
supported by a transport mode SA, while the latter technique uses a tunnel mode SA.

In this section, we look at the scope of ESP for the two modes. The consid-
erations are somewhat different for IPv4 and IPv6. We use the packet formats of
Figure 9.8a as a starting point.

Transport Mode ESP  Transport mode ESP is used to encrypt and optionally
authenticate the data carried by IP (e.g., a TCP segment), as shown in Figure 9.8b.
For this mode using IPv4, the ESP header is inserted into the IP packet immedi-
ately prior to the transport-layer header (e.g., TCP, UDP, ICMP), and an ESP
trailer (Padding, Pad Length, and Next Header fields) is placed after the IP packet.
If authentication is selected, the ESP Authentication Data field is added after the
ESP trailer. The entire transport-level segment plus the ESP trailer are encrypted.
Authentication covers all of the ciphertext plus the ESP header.

In the context of IPv6, ESP is viewed as an end-to-end payload; that is, it is not
examined or processed by intermediate routers. Therefore, the ESP header appears
after the IPv6 base header and the hop-by-hop, routing, and fragment extension
headers. The destination options extension header could appear before or after
the ESP header, depending on the semantics desired. For IPv6, encryption covers

Figure 9.7  Transport-Mode versus Tunnel-Mode Encryptionx

Internal
Network

External
Network

Encrypted
TCP Session

(a) Transport-level security

Internet

Corporate
network

Corporate
network

Corporate
network

Corporate
network

(b) A virtual private network via tunnel mode

Encrypted tunnels
carrying IP tra�c

M09_STAL4855_06_GE_C09.indd 318 8/9/16 9:34 PM

9.3 / Encapsulating Security Payload  319

the entire transport-level segment plus the ESP trailer plus the destination options
extension header if it occurs after the ESP header. Again, authentication covers the
ciphertext plus the ESP header.

Transport mode operation may be summarized as follows.

1.	 At the source, the block of data consisting of the ESP trailer plus the entire
transport-layer segment is encrypted and the plaintext of this block is replaced

Figure 9.8  Scope of ESP Encryption and Authentication

Orig IP
hdr

Hop-by-hop, dest,
routing, fragmentIPv6

Orig IP
hdrIPv4

New IP
hdrIPv4

(b) Transport Mode

New IP
hdr

Ext
headersIPv6

Authenticated
Encrypted

Authenticated
Encrypted

Authenticated
Encrypted

Authenticated
Encrypted

(c) Tunnel Mode

Orig IP
hdr

Ext
headers TCP Data

ESP
trlr

ESP
auth

ESP
hdr

ESP
auth

Orig IP
hdr TCP Data

ESP
trlr

ESP
auth

ESP
hdr

Dest TCP Data

TCP Data

ESP
trlr

ESP
auth

ESP
trlr

ESP
hdr

ESP
hdr

Orig IP
hdr

Extension headers
(if present) TCP DataIPv6

Orig IP
hdr TCP DataIPv4

(a) Before Applying ESP

M09_STAL4855_06_GE_C09.indd 319 8/9/16 9:34 PM

320   chapter 9 / IP Security

with its ciphertext to form the IP packet for transmission. Authentication is
added if this option is selected.

2.	 The packet is then routed to the destination. Each intermediate router needs
to examine and process the IP header plus any plaintext IP extension headers
but does not need to examine the ciphertext.

3.	 The destination node examines and processes the IP header plus any plaintext
IP extension headers. Then, on the basis of the SPI in the ESP header, the
destination node decrypts the remainder of the packet to recover the plaintext
transport-layer segment.

Transport mode operation provides confidentiality for any application that
uses it, thus avoiding the need to implement confidentiality in every individual
application. One drawback to this mode is that it is possible to do traffic analysis on
the transmitted packets.

Tunnel Mode ESP  Tunnel mode ESP is used to encrypt an entire IP packet
(Figure 9.8c). For this mode, the ESP header is prefixed to the packet and then the
packet plus the ESP trailer is encrypted. This method can be used to counter traffic
analysis.

Because the IP header contains the destination address and possibly source rout-
ing directives and hop-by-hop option information, it is not possible simply to transmit
the encrypted IP packet prefixed by the ESP header. Intermediate routers would be
unable to process such a packet. Therefore, it is necessary to encapsulate the entire
block (ESP header plus ciphertext plus Authentication Data, if present) with a new IP
header that will contain sufficient information for routing but not for traffic analysis.

Whereas the transport mode is suitable for protecting connections between
hosts that support the ESP feature, the tunnel mode is useful in a configuration that
includes a firewall or other sort of security gateway that protects a trusted network
from external networks. In this latter case, encryption occurs only between an exter-
nal host and the security gateway or between two security gateways. This relieves
hosts on the internal network of the processing burden of encryption and simplifies
the key distribution task by reducing the number of needed keys. Further, it thwarts
traffic analysis based on ultimate destination.

Consider a case in which an external host wishes to communicate with a host
on an internal network protected by a firewall, and in which ESP is implemented
in the external host and the firewalls. The following steps occur for transfer of a
transport-layer segment from the external host to the internal host.

1.	 The source prepares an inner IP packet with a destination address of the target
internal host. This packet is prefixed by an ESP header; then the packet and
ESP trailer are encrypted and Authentication Data may be added. The result-
ing block is encapsulated with a new IP header (base header plus optional
extensions such as routing and hop-by-hop options for IPv6) whose destination
address is the firewall; this forms the outer IP packet.

2.	 The outer packet is routed to the destination firewall. Each intermediate
router needs to examine and process the outer IP header plus any outer IP
extension headers but does not need to examine the ciphertext.

M09_STAL4855_06_GE_C09.indd 320 8/9/16 9:34 PM

9.3 / Encapsulating Security Payload  321

3.	 The destination firewall examines and processes the outer IP header plus any
outer IP extension headers. Then, on the basis of the SPI in the ESP header, the
destination node decrypts the remainder of the packet to recover the plaintext
inner IP packet. This packet is then transmitted in the internal network.

4.	 The inner packet is routed through zero or more routers in the internal net-
work to the destination host.

Figure 9.9 shows the protocol architecture for the two modes.

Figure 9.9  Protocol Operation for ESP

Data

Data

TCP
hdr Data

TCP
hdr

DataOrig IP
hdr

TCP
hdr Data ESP

trlr
ESP
hdr

Orig IP
hdr

ESP
auth

New IP
hdr

TCP
hdr

Data ESP
trlr

ESP
hdr

Orig IP
hdr

ESP
auth

TCP
hdr

Data

Orig IP
hdr

TCP
hdr Data

Orig IP
hdr

TCP
hdr

Data

(a) Transport mode

(b) Tunnel mode

ESP
trlr

ESP
hdr

ESP
auth

Application

TCP

IP

IPsec

Application

TCP

IP

IPsec

IP

M09_STAL4855_06_GE_C09.indd 321 8/9/16 9:34 PM

322   chapter 9 / IP Security

	 9.4	Co mbining Security Associations

An individual SA can implement either the AH or ESP protocol but not both.
Sometimes a particular traffic flow will call for the services provided by both AH
and ESP. Further, a particular traffic flow may require IPsec services between hosts
and, for that same flow, separate services between security gateways, such as fire-
walls. In all of these cases, multiple SAs must be employed for the same traffic flow
to achieve the desired IPsec services. The term security association bundle refers to
a sequence of SAs through which traffic must be processed to provide a desired set
of IPsec services. The SAs in a bundle may terminate at different endpoints or at
the same endpoints.

Security associations may be combined into bundles in two ways:

■■ Transport adjacency: Refers to applying more than one security protocol to
the same IP packet without invoking tunneling. This approach to combining
AH and ESP allows for only one level of combination; further nesting yields
no added benefit since the processing is performed at one IPsec instance: the
(ultimate) destination.

■■ Iterated tunneling: Refers to the application of multiple layers of security pro-
tocols effected through IP tunneling. This approach allows for multiple levels
of nesting, since each tunnel can originate or terminate at a different IPsec site
along the path.

The two approaches can be combined, for example, by having a transport SA
between hosts travel part of the way through a tunnel SA between security gateways.

One interesting issue that arises when considering SA bundles is the order
in which authentication and encryption may be applied between a given pair of
endpoints and the ways of doing so. We examine that issue next. Then we look at
combinations of SAs that involve at least one tunnel.

Authentication Plus Confidentiality

Encryption and authentication can be combined in order to transmit an IP packet
that has both confidentiality and authentication between hosts. We look at several
approaches.

ESP with Authentication Option  This approach is illustrated in Figure 9.8.
In this approach, the user first applies ESP to the data to be protected and then
appends the authentication data field. There are actually two subcases:

■■ Transport mode ESP: Authentication and encryption apply to the IP payload
delivered to the host, but the IP header is not protected.

■■ Tunnel mode ESP: Authentication applies to the entire IP packet delivered
to the outer IP destination address (e.g., a firewall), and authentication is
performed at that destination. The entire inner IP packet is protected by the
privacy mechanism for delivery to the inner IP destination.

For both cases, authentication applies to the ciphertext rather than the plaintext.

M09_STAL4855_06_GE_C09.indd 322 8/9/16 9:34 PM

9.4 / Combining Security Associations  323

Transport Adjacency  Another way to apply authentication after encryption is to
use two bundled transport SAs, with the inner being an ESP SA and the outer being
an AH SA. In this case, ESP is used without its authentication option. Because the
inner SA is a transport SA, encryption is applied to the IP payload. The resulting
packet consists of an IP header (and possibly IPv6 header extensions) followed by
an ESP. AH is then applied in transport mode, so that authentication covers the
ESP plus the original IP header (and extensions) except for mutable fields. The
advantage of this approach over simply using a single ESP SA with the ESP authen-
tication option is that the authentication covers more fields, including the source
and destination IP addresses. The disadvantage is the overhead of two SAs versus
one SA.

Transport-Tunnel Bundle  The use of authentication prior to encryption might
be preferable for several reasons. First, because the authentication data are pro-
tected by encryption, it is impossible for anyone to intercept the message and alter
the authentication data without detection. Second, it may be desirable to store the
authentication information with the message at the destination for later reference.
It is more convenient to do this if the authentication information applies to the un-
encrypted message; otherwise the message would have to be reencrypted to verify
the authentication information.

One approach to applying authentication before encryption between two hosts
is to use a bundle consisting of an inner AH transport SA and an outer ESP tunnel
SA. In this case, authentication is applied to the IP payload plus the IP header (and
extensions) except for mutable fields. The resulting IP packet is then processed
in tunnel mode by ESP; the result is that the entire, authenticated inner packet is
encrypted and a new outer IP header (and extensions) is added.

Basic Combinations of Security Associations

The IPsec Architecture document lists four examples of combinations of SAs that
must be supported by compliant IPsec hosts (e.g., workstation, server) or security
gateways (e.g., firewall, router). These are illustrated in Figure 9.10. The lower part
of each case in the figure represents the physical connectivity of the elements; the
upper part represents logical connectivity via one or more nested SAs. Each SA can
be either AH or ESP. For host-to-host SAs, the mode may be either transport or
tunnel; otherwise it must be tunnel mode.

Case 1. All security is provided between end systems that implement IPsec.
For any two end systems to communicate via an SA, they must share the appropri-
ate secret keys. Among the possible combinations are

a.	 AH in transport mode

b.	 ESP in transport mode

c.	 ESP followed by AH in transport mode (an ESP SA inside an AH SA)

d.	 Any one of a, b, or c inside an AH or ESP in tunnel mode

We have already discussed how these various combinations can be used to
support authentication, encryption, authentication before encryption, and authenti-
cation after encryption.

M09_STAL4855_06_GE_C09.indd 323 8/9/16 9:34 PM

324   chapter 9 / IP Security

F
ig

ur
e

9.
10

 
B

as
ic

 C
om

bi
na

ti
on

s
of

 S
ec

ur
it

y
A

ss
oc

ia
ti

on
s

In
te

rn
et

Tu
nn

el
 S

A
O

ne
 o

r T
w

o
SA

s

L
oc

al
In

tr
an

et
L

oc
al

In
tr

an
et

H
os

t*
H

os
t*

Se
cu

ri
ty

G
at

ew
ay

*
Se

cu
ri

ty
G

at
ew

ay
*

(c
) C

as
e

3

In
te

rn
et

Tu
nn

el
 S

A

L
oc

al
In

tr
an

et
L

oc
al

In
tr

an
et

H
os

t
H

os
t

Se
cu

ri
ty

G
at

ew
ay

*
Se

cu
ri

ty
G

at
ew

ay
*

(b
) C

as
e

2

*
=

 im
pl

em
en

ts
 IP

se
c

In
te

rn
et

O
ne

 o
r M

or
e

SA
s

L
oc

al
In

tr
an

et
L

oc
al

In
tr

an
et

H
os

t*
H

os
t*

R
ou

te
r

R
ou

te
r

(a
) C

as
e

1

In
te

rn
et

L
oc

al
In

tr
an

et

H
os

t*
H

os
t*

Se
cu

ri
ty

G
at

ew
ay

*

(d
) C

as
e

4

Tu
nn

el
 S

A
O

ne
 o

r T
w

o
SA

s

M09_STAL4855_06_GE_C09.indd 324 8/9/16 9:34 PM

9.5 / Internet Key Exchange  325

Case 2. Security is provided only between gateways (routers, firewalls, etc.)
and no hosts implement IPsec. This case illustrates simple virtual private network
support. The security architecture document specifies that only a single tunnel SA is
needed for this case. The tunnel could support AH, ESP, or ESP with the authenti-
cation option. Nested tunnels are not required, because the IPsec services apply to
the entire inner packet.

Case 3. This builds on case 2 by adding end-to-end security. The same combi-
nations discussed for cases 1 and 2 are allowed here. The gateway-to-gateway tun-
nel provides either authentication, confidentiality, or both for all traffic between
end systems. When the gateway-to-gateway tunnel is ESP, it also provides a limited
form of traffic confidentiality. Individual hosts can implement any additional IPsec
services required for given applications or given users by means of end-to-end SAs.

Case 4. This provides support for a remote host that uses the Internet to reach
an organization’s firewall and then to gain access to some server or workstation
behind the firewall. Only tunnel mode is required between the remote host and the
firewall. As in case 1, one or two SAs may be used between the remote host and the
local host.

	 9.5	 Internet Key Exchange

The key management portion of IPsec involves the determination and distribution
of secret keys. A typical requirement is four keys for communication between two
applications: transmit and receive pairs for both integrity and confidentiality. The
IPsec Architecture document mandates support for two types of key management:

■■ Manual: A system administrator manually configures each system with its own
keys and with the keys of other communicating systems. This is practical for
small, relatively static environments.

■■ Automated: An automated system enables the on-demand creation of keys for
SAs and facilitates the use of keys in a large distributed system with an evolv-
ing configuration.

The default automated key management protocol for IPsec is referred to as
ISAKMP/Oakley and consists of the following elements:

■■ Oakley Key Determination Protocol: Oakley is a key exchange protocol based
on the Diffie–Hellman algorithm but providing added security. Oakley is
generic in that it does not dictate specific formats.

■■ Internet Security Association and Key Management Protocol (ISAKMP):
ISAKMP provides a framework for Internet key management and provides
the specific protocol support, including formats, for negotiation of security
attributes.

ISAKMP by itself does not dictate a specific key exchange algorithm; rather,
ISAKMP consists of a set of message types that enable the use of a variety of key
exchange algorithms. Oakley is the specific key exchange algorithm mandated for
use with the initial version of ISAKMP.

M09_STAL4855_06_GE_C09.indd 325 8/9/16 9:34 PM

326   chapter 9 / IP Security

In IKEv2, the terms Oakley and ISAKMP are no longer used, and there
are significant differences from the use of Oakley and ISAKMP in IKEv1.
Nevertheless, the basic functionality is the same. In this section, we describe the
IKEv2 specification.

Key Determination Protocol

IKE key determination is a refinement of the Diffie–Hellman key exchange algo-
rithm. Recall that Diffie–Hellman involves the following interaction between users
A and B. There is prior agreement on two global parameters: q, a large prime num-
ber; and a, a primitive root of q. A selects a random integer XA as its private key and
transmits to B its public key ΥA = aXA mod q. Similarly, B selects a random integer
XB as its private key and transmits to A its public key ΥB = aXB mod q. Each side
can now compute the secret session key:

	 K = (ΥB)XA mod q = (ΥA)XB mod q = aXAXB mod q	

The Diffie–Hellman algorithm has two attractive features:

■■ Secret keys are created only when needed. There is no need to store secret
keys for a long period of time, exposing them to increased vulnerability.

■■ The exchange requires no pre-existing infrastructure other than an agreement
on the global parameters.

However, there are a number of weaknesses to Diffie–Hellman, as pointed out in
[HUIT98].

■■ It does not provide any information about the identities of the parties.

■■ It is subject to a man-in-the-middle attack, in which a third party C imperson-
ates B while communicating with A and impersonates A while communicating
with B. Both A and B end up negotiating a key with C, which can then listen to
and pass on traffic. The man-in-the-middle attack proceeds as

1.	 B sends his public key YB in a message addressed to A (see Figure 3.14).

2.	 The enemy (E) intercepts this message. E saves B’s public key and sends a
message to A that has B’s User ID but E’s public key YE. This message is
sent in such a way that it appears as though it was sent from B’s host system.
A receives E’s message and stores E’s public key with B’s User ID. Similarly,
E sends a message to B with E’s public key, purporting to come from A.

3.	 B computes a secret key K1 based on B’s private key and YE. A computes
a secret key K2 based on A’s private key and YE. E computes K1 using E’s
secret key XE and YB and computers K2 using XE and YA.

4.	 From now on, E is able to relay messages from A to B and from B to A,
appropriately changing their encipherment en route in such a way that nei-
ther A nor B will know that they share their communication with E.

■■ It is computationally intensive. As a result, it is vulnerable to a clogging attack,
in which an opponent requests a high number of keys. The victim spends con-
siderable computing resources doing useless modular exponentiation rather
than real work.

M09_STAL4855_06_GE_C09.indd 326 8/9/16 9:34 PM

9.5 / Internet Key Exchange  327

IKE key determination is designed to retain the advantages of Diffie–Hellman,
while countering its weaknesses.

Features of IKE key determination  The IKE key determination algorithm is
characterized by five important features:

1.	 It employs a mechanism known as cookies to thwart clogging attacks.

2.	 It enables the two parties to negotiate a group; this, in essence, specifies the
global parameters of the Diffie–Hellman key exchange.

3.	 It uses nonces to ensure against replay attacks.

4.	 It enables the exchange of Diffie–Hellman public key values.

5.	 It authenticates the Diffie–Hellman exchange to thwart man-in-the-middle
attacks.

We have already discussed Diffie–Hellman. Let us look at the remainder
of these elements in turn. First, consider the problem of clogging attacks. In this
attack, an opponent forges the source address of a legitimate user and sends a public
Diffie–Hellman key to the victim. The victim then performs a modular exponen-
tiation to compute the secret key. Repeated messages of this type can clog the
victim’s system with useless work. The cookie exchange requires that each side send
a pseudorandom number, the cookie, in the initial message, which the other side
acknowledges. This acknowledgment must be repeated in the first message of the
Diffie–Hellman key exchange. If the source address was forged, the opponent gets
no answer. Thus, an opponent can only force a user to generate acknowledgments
and not to perform the Diffie–Hellman calculation.

IKE mandates that cookie generation satisfy three basic requirements:

1.	 The cookie must depend on the specific parties. This prevents an attacker from
obtaining a cookie using a real IP address and UDP port and then using it to
swamp the victim with requests from randomly chosen IP addresses or ports.

2.	 It must not be possible for anyone other than the issuing entity to generate
cookies that will be accepted by that entity. This implies that the issuing entity
will use local secret information in the generation and subsequent verification
of a cookie. It must not be possible to deduce this secret information from any
particular cookie. The point of this requirement is that the issuing entity need
not save copies of its cookies, which are then more vulnerable to discovery, but
can verify an incoming cookie acknowledgment when it needs to.

3.	 The cookie generation and verification methods must be fast to thwart attacks
intended to sabotage processor resources.

The recommended method for creating the cookie is to perform a fast hash
(e.g., MD5) over the IP Source and Destination addresses, the UDP Source and
Destination ports, and a locally generated secret value.

IKE key determination supports the use of different groups for the Diffie–
Hellman key exchange. Each group includes the definition of the two global
parameters and the identity of the algorithm. The current specification includes the
following groups.

M09_STAL4855_06_GE_C09.indd 327 8/9/16 9:34 PM

328   chapter 9 / IP Security

■■ Modular exponentiation with a 768-bit modulus

q = 2768 - 2704 - 1 + 264 * (:2638 * p; + 149686)

a = 2

■■ Modular exponentiation with a 1024-bit modulus

q = 21024 - 2960 - 1 + 264 * (:2894 * p; + 129093)

a = 2

■■ Modular exponentiation with a 1536-bit modulus

	 –	 Parameters to be determined

■■ Elliptic curve group over 2155

	 –	 Generator (hexadecimal): X = 7B, Y = 1C8

	 –	 Elliptic curve parameters (hexadecimal): A = 0, Y = 7338F

■■ Elliptic curve group over 2185

	 –	 Generator (hexadecimal): X = 18, Y = D

	 –	 Elliptic curve parameters (hexadecimal): A = 0, Y = 1EE9

The first three groups are the classic Diffie–Hellman algorithm using modular
exponentiation. The last two groups use the elliptic curve analog to Diffie–Hellman.

IKE key determination employs nonces to ensure against replay attacks.
Each nonce is a locally generated pseudorandom number. Nonces appear in
responses and are encrypted during certain portions of the exchange to secure
their use.

Three different authentication methods can be used with IKE key determination:

■■ Digital signatures: The exchange is authenticated by signing a mutually
obtainable hash; each party encrypts the hash with its private key. The hash is
generated over important parameters, such as user IDs and nonces.

■■ Public-key encryption: The exchange is authenticated by encrypting param-
eters such as IDs and nonces with the sender’s private key.

■■ Symmetric-key encryption: A key derived by some out-of-band mechanism
can be used to authenticate the exchange by symmetric encryption of exchange
parameters.

IKEv2 Exchanges  The IKEv2 protocol involves the exchange of messages
in pairs. The first two pairs of exchanges are referred to as the initial exchanges
(Figure 9.11a). In the first exchange, the two peers exchange information concern-
ing cryptographic algorithms and other security parameters they are willing to use
along with nonces and Diffie–Hellman (DH) values. The result of this exchange is to
set up a special SA called the IKE SA (see Figure 9.2). This SA defines parameters
for a secure channel between the peers over which subsequent message exchanges
take place. Thus, all subsequent IKE message exchanges are protected by encryp-
tion and message authentication. In the second exchange, the two parties authenti-
cate one another and set up a first IPsec SA to be placed in the SADB and used for

M09_STAL4855_06_GE_C09.indd 328 8/9/16 9:34 PM

9.5 / Internet Key Exchange  329

Figure 9.11  IKEv2 Exchanges

HDR, SAi1, KEi, Ni

ResponderInitiator

(a) Initial exchanges

HDR, SAr1, KEr, Nr, [CERTREQ]

HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr}

HDR, SK {IDr, [CERT,] AUTH, SAr2, TSi, TSr}

HDR, SK {[N], SA, Ni, [KEi], [TSi, TSr]}

(b) CREATE_CHILD_SA exchange

HDR, SK {SA, Nr, [KEr], [TSi, TSr]}

HDR, SK {[N,] [D,] [CP,] ...}

(c) Informational exchange

HDR, SK {[N,] [D,] [CP], ...}

HDR = IKE header
SAx1 = o
ered and chosen algorithms, DH group
KEx = Di�e–Hellman public key
Nx = nonces
CERTREQ = Certi�cate request
IDx = identity
CERT = certi�cate

SK {...} = MAC and encrypt
AUTH = Authentication
SAx2 = algorithms, parameters for IPsec SA
TSx = tra�c selectors for IPsec SA
N = Notify
D = Delete
CP = Con�guration

protecting ordinary (i.e. non-IKE) communications between the peers. Thus, four
messages are needed to establish the first SA for general use.

The CREATE_CHILD_SA exchange can be used to establish further SAs
for protecting traffic. The informational exchange is used to exchange management
information, IKEv2 error messages, and other notifications.

Header and Payload Formats

IKE defines procedures and packet formats to establish, negotiate, modify, and
delete security associations. As part of SA establishment, IKE defines payloads for
exchanging key generation and authentication data. These payload formats provide
a consistent framework independent of the specific key exchange protocol, encryp-
tion algorithm, and authentication mechanism.

IKE Header Format  An IKE message consists of an IKE header followed by one
or more payloads. All of this is carried in a transport protocol. The specification dic-
tates that implementations must support the use of UDP for the transport protocol.

M09_STAL4855_06_GE_C09.indd 329 8/9/16 9:34 PM

330   chapter 9 / IP Security

Figure 9.12a shows the header format for an IKE message. It consists of the
following fields.

■■ Initiator SPI (64 bits): A value chosen by the initiator to identify a unique IKE
security association (SA).

■■ Responder SPI (64 bits): A value chosen by the responder to identify a unique
IKE SA.

■■ Next Payload (8 bits): Indicates the type of the first payload in the message;
payloads are discussed in the next subsection.

■■ Major Version (4 bits): Indicates major version of IKE in use.

■■ Minor Version (4 bits): Indicates minor version in use.

■■ Exchange Type (8 bits): Indicates the type of exchange; these are discussed
later in this section.

■■ Flags (8 bits): Indicates specific options set for this IKE exchange. Three bits
are defined so far. The initiator bit indicates whether this packet is sent by
the SA initiator. The version bit indicates whether the transmitter is capable
of using a higher major version number than the one currently indicated. The
response bit indicates whether this is a response to a message containing the
same message ID.

■■ Message ID (32 bits): Used to control retransmission of lost packets and
matching of requests and responses.

■■ Length (32 bits): Length of total message (header plus all payloads) in octets.

IKE Payload Types  All IKE payloads begin with the same generic payload header
shown in Figure 9.12b. The Next Payload field has a value of 0 if this is the last

Figure 9.12  IKE Formats

MjVer MnVer Exchange Type FlagsNext Payload

Message ID

Length

(a) IKE header

(b) Generic Payload header

Initiator’s Security Parameter Index (SPI)

Responder’s Security Parameter Index (SPI)

0Bit: 8 16 24 31

RESERVED Payload LengthNext Payload C

0Bit: 8 16 31

M09_STAL4855_06_GE_C09.indd 330 8/9/16 9:34 PM

9.5 / Internet Key Exchange  331

Type Parameters

Security Association Proposals

Key Exchange DH Group #, Key Exchange Data

Identification ID Type, ID Data

Certificate Cert Encoding, Certificate Data

Certificate Request Cert Encoding, Certification Authority

Authentication Auth Method, Authentication Data

Nonce Nonce Data

Notify Protocol-ID, SPI Size, Notify Message Type, SPI, Notification Data

Delete Protocol-ID, SPI Size, # of SPIs, SPI (one or more)

Vendor ID Vendor ID

Traffic Selector Number of TSs, Traffic Selectors

Encrypted IV, Encrypted IKE payloads, Padding, Pad Length, ICV

Configuration CFG Type, Configuration Attributes

Extensible Authentication
Protocol

EAP Message

Table 9.3  IKE Payload Types

payload in the message; otherwise its value is the type of the next payload. The
Payload Length field indicates the length in octets of this payload, including the
generic payload header.

The critical bit is 0 if the sender wants the recipient to skip this payload if it
does not understand the payload type code in the Next Payload field of the previous
payload. It is set to 1 if the sender wants the recipient to reject this entire message if
it does not understand the payload type.

Table 9.3 summarizes the payload types defined for IKE and lists the fields,
or parameters, that are part of each payload. The SA payload is used to begin the
establishment of an SA. The payload has a complex, hierarchical structure. The
payload may contain multiple proposals. Each proposal may contain multiple pro-
tocols. Each protocol may contain multiple transforms. And each transform may
contain multiple attributes. These elements are formatted as substructures within
the payload as follows.

■■ Proposal: This substructure includes a proposal number, a protocol ID (AH,
ESP, or IKE), an indicator of the number of transforms, and then a transform
substructure. If more than one protocol is to be included in a proposal, then
there is a subsequent proposal substructure with the same proposal number.

■■ Transform: Different protocols support different transform types. The trans-
forms are used primarily to define cryptographic algorithms to be used with a
particular protocol.

■■ Attribute: Each transform may include attributes that modify or complete the
specification of the transform. An example is key length.

M09_STAL4855_06_GE_C09.indd 331 8/9/16 9:34 PM

332   chapter 9 / IP Security

The Key Exchange payload can be used for a variety of key exchange tech-
niques, including Oakley, Diffie–Hellman, and the RSA-based key exchange used
by PGP. The Key Exchange data field contains the data required to generate a ses-
sion key and is dependent on the key exchange algorithm used.

The Identification payload is used to determine the identity of communicating
peers and may be used for determining authenticity of information. Typically the
ID Data field will contain an IPv4 or IPv6 address.

The Certificate payload transfers a public-key certificate. The Certificate
Encoding field indicates the type of certificate or certificate-related information,
which may include the following:

■■ PKCS #7 wrapped X.509 certificate

■■ PGP certificate

■■ DNS signed key

■■ X.509 certificate—signature

■■ X.509 certificate—key exchange

■■ Kerberos tokens

■■ Certificate Revocation List (CRL)

■■ Authority Revocation List (ARL)

■■ SPKI certificate

At any point in an IKE exchange, the sender may include a Certificate Request
payload to request the certificate of the other communicating entity. The payload
may list more than one certificate type that is acceptable and more than one certifi-
cate authority that is acceptable.

The Authentication payload contains data used for message authentication
purposes. The authentication method types so far defined are RSA digital signa-
ture, shared-key message integrity code, and DSS digital signature.

The Nonce payload contains random data used to guarantee liveness during
an exchange and to protect against replay attacks.

The Notify payload contains either error or status information associated with
this SA or this SA negotiation. The following table lists the IKE notify messages.

Error Messages Status Messages

Unsupported Critical Initial Contact

Payload Set Window Size

Invalid IKE SPI Additional TS Possible

Invalid Major Version IPCOMP Supported

Invalid Syntax NAT Detection Source IP

Invalid Payload Type NAT Detection Destination IP

Invalid Message ID Cookie

Invalid SPI Use Transport Mode

M09_STAL4855_06_GE_C09.indd 332 8/9/16 9:34 PM

9.6 / Cryptographic Suites  333

Error Messages Status Messages

No Proposal Chosen HTTP Cert Lookup Supported

Invalid KE Payload Rekey SA

Authentication Failed ESP TFC Padding Not Supported

Single Pair Required Non First Fragments Also

No Additional SAS

Internal Address Failure

Failed CP Required

TS Unacceptable

Invalid Selectors

The Delete payload indicates one or more SAs that the sender has deleted
from its database and that therefore are no longer valid.

The Vendor ID payload contains a vendor-defined constant. The constant
is used by vendors to identify and recognize remote instances of their implemen-
tations. This mechanism allows a vendor to experiment with new features while
maintaining backward compatibility.

The Traffic Selector payload allows peers to identify packet flows for process-
ing by IPsec services.

The Encrypted payload contains other payloads in encrypted form. The
encrypted payload format is similar to that of ESP. It may include an IV if the
encryption algorithm requires it and an ICV if authentication is selected.

The Configuration payload is used to exchange configuration information
between IKE peers.

The Extensible Authentication Protocol (EAP) payload allows IKE SAs to
be authenticated using EAP, which was discussed in Chapter 5.

	 9.6	C ryptographic Suites

The IPsecv3 and IKEv3 protocols rely on a variety of types of cryptographic algo-
rithms. As we have seen in this book, there are many cryptographic algorithms of
each type, each with a variety of parameters, such as key size. To promote interop-
erability, two RFCs define recommended suites of cryptographic algorithms and
parameters for various applications.

RFC 4308 defines two cryptographic suites for establishing virtual private net-
works. Suite VPN-A matches the commonly used corporate VPN security used in
older IKEv1 implementations at the time of the issuance of IKEv2 in 2005. Suite
VPN-B provides stronger security and is recommended for new VPNs that imple-
ment IPsecv3 and IKEv2.

Table 9.4a lists the algorithms and parameters for the two suites. There are
several points to note about these two suites. Note that for symmetric cryptography,

M09_STAL4855_06_GE_C09.indd 333 8/9/16 9:34 PM

334   chapter 9 / IP Security

VPN-A relies on 3DES and HMAC, while VPN-B relies exclusively on AES. Three
types of secret-key algorithms are used:

■■ Encryption: For encryption, the cipher block chaining (CBC) mode is used.

■■ Message authentication: For message authentication, VPN-A relies on HMAC
with SHA-1 with the output truncated to 96 bits. VPN-B relies on a variant of
CMAC with the output truncated to 96 bits.

■■ Pseudorandom function: IKEv2 generates pseudorandom bits by repeated use
of the MAC used for message authentication.

RFC 6379 defines four optional cryptographic suites that are compatible with
the United States National Security Agency’s Suite B specifications. In 2005, the
NSA issued Suite B, which defined the algorithms and strengths needed to pro-
tect both sensitive but unclassified (SBU) and classified information for use in
its Cryptographic Modernization program [LATT09]. The four suites defined in
RFC 6379 provide choices for ESP and IKE. The four suites are differentiated by
the choice of cryptographic algorithm strengths and a choice of whether ESP is to
provide both confidentiality and integrity or integrity only. All of the suites offer
greater protection than the two VPN suites defined in RFC 4308.

VPN-A VPN-B

ESP encryption 3DES-CBC AES-CBC (128-bit key)

ESP integrity HMAC-SHA1-96 AES-XCBC-MAC-96

IKE encryption 3DES-CBC AES-CBC (128-bit key)

IKE PRF HMAC-SHA1 AES-XCBC-PRF-128

IKE Integrity HMAC-SHA1-96 AES-XCBC-MAC-96

IKE DH group 1024-bit MODP 2048-bit MODP

(a) Virtual private networks (RFC 4308)

GCM-128 GCM-256 GMAC-128 GMAC-256

ESP encryption/
Integrity

AES-GCM
(128-bit key)

AES-GCM
(256-bit key)

Null Null

ESP integrity Null Null AES-GMAC (128-
bit key)

AES-GMAC
(256-bit key)

IKE encryption AES-CBC
(128-bit key)

AES-CBC
(256-bit key)

AES-CBC
(128-bit key)

AES-CBC
(256-bit key)

IKE PRF HMAC-SHA-256 HMAC-SHA-384 HMAC-SHA-256 HMAC-SHA-384

IKE Integrity HMAC-SHA-
256-128

HMAC-SHA-
384-192

HMAC-SHA-
256-128

HMAC-SHA-
384-192

IKE DH group 256-bit random
ECP

384-bit random
ECP

256-bit random
ECP

384-bit random
ECP

(b) NSA Suite B (RFC 6379)

Table 9.4  Cryptographic Suites for IPsec

M09_STAL4855_06_GE_C09.indd 334 8/9/16 9:34 PM

9.7 / Key Terms, Review Questions, And Problems  335

Key Terms

Table 9.4b lists the algorithms and parameters for the two suites. As with
RFC 4308, three categories of secret key algorithms are listed:

■■ Encryption: For ESP, authenticated encryption is provided using the GCM
mode with either 128-bit or 256-bit AES keys. For IKE encryption, CBC is
used, as it was for the VPN suites.

■■ Message authentication: For ESP, if only authentication is required, then a
message authentication algorithm known as GMAC is used. For IKE, mes-
sage authentication is provided using HMAC with one of the SHA-3 hash
functions.

■■ Pseudorandom function: As with the VPN suites, IKEv2 in these suites gen-
erates pseudorandom bits by repeated use of the MAC used for message
authentication.

For the Diffie–Hellman algorithm, the use of elliptic curve groups modulo
a prime is specified. For authentication, elliptic curve digital signatures are listed.
The original IKEv2 documents used RSA-based digital signatures. Equivalent or
greater strength can be achieved using ECC with fewer key bits.

	 9.7 Key Terms, Review Questions, And Problems

anti-replay service
Authentication Header (AH)
Encapsulating Security

Payload (ESP)
Internet Key Exchange

(IKE)

Internet Security Association
and Key Management
Protocol (ISAKMP)

IP Security (IPsec)
IPv4
IPv6

Oakley key determination
protocol

replay attack
security association (SA)
transport mode
tunnel mode

Review Questions

	 9.1	 List and briefly describe some benefits of IPsec.
	 9.2	 List and briefly define different categories of IPsec documents.
	 9.3	 What parameters identify an SA and what parameters characterize the nature of a

particular SA?
	 9.4	 What is the difference between transport mode and tunnel mode?
	 9.5	 What are the types of secret key algorithm used in IPsec?
	 9.6	 Why does ESP include a padding field?
	 9.7	 What are the basic approaches to bundling SAs?
	 9.8	 What are the roles of the Oakley key determination protocol and ISAKMP in IPsec?

M09_STAL4855_06_GE_C09.indd 335 8/9/16 9:34 PM

336   chapter 9 / IP Security

Problems

	 9.1	 Describe and explain each of the entries in Table 9.2.
	 9.2	 Draw a figure similar to Figure 9.8 for AH.
	 9.3	 List the major security services provided by AH and ESP, respectively.
	 9.4	 In discussing AH processing, it was mentioned that not all of the fields in an IP header

are included in MAC calculation.
a.	 For each of the fields in the IPv4 header, indicate whether the field is immutable,

mutable but predictable, or mutable (zeroed prior to ICV calculation).
b.	 Do the same for the IPv6 header.
c.	 Do the same for the IPv6 extension headers.
In each case, justify your decision for each field.

	 9.5	 Suppose that the current replay window spans from 120 to 530.
a.	 If the next incoming authenticated packet has sequence number 340, what will the

receiver do with the packet, and what will be the parameters of the window after
that?

b.	 If instead the next incoming authenticated packet has sequence number 598,
what will the receiver do with the packet, and what will be the parameters of the
window after that?

c.	 If instead the next incoming authenticated packet has sequence number 110,
what will the receiver do with the packet, and what will be the parameters of the
window after that?

	 9.6	 When tunnel mode is used, a new outer IP header is constructed. For both IPv4
and IPv6, indicate the relationship of each outer IP header field and each extension
header in the outer packet to the corresponding field or extension header of the inner
IP packet. That is, indicate which outer values are derived from inner values and
which are constructed independently of the inner values.

	 9.7	 End-to-end authentication and encryption are desired between two hosts. Draw
figures similar to Figure 9.8 that show each of the following.
a.	 Transport adjacency with encryption applied before authentication.
b.	 A transport SA bundled inside a tunnel SA with encryption applied before

authentication.
c.	 A transport SA bundled inside a tunnel SA with authentication applied before

encryption.
	 9.8	 The IPsec architecture document states that when two transport mode SAs are

bundled to allow both AH and ESP protocols on the same end-to-end flow, only
one ordering of security protocols seems appropriate: performing the ESP protocol
before performing the AH protocol. Why is this approach recommended rather than
authentication before encryption?

	 9.9	 For the IKE key exchange, indicate which parameters in each message go in which
ISAKMP payload types.

	 9.10	 Where does IPsec reside in a protocol stack?

M09_STAL4855_06_GE_C09.indd 336 8/9/16 9:34 PM

337

10.1	 Types of Malicious Software (Malware)

10.2	 Advanced Persistent Threats

10.3	 Propagation—Infected Content—Viruses

10.4	 Propagation—Vulnerability Exploit—Worms

10.5	 Propagation—Social Engineering—Spam E-mail, Trojans

10.6	 Payload—System Corruption

10.7	 Payload—Attack Agent—Zombie, Bots

10.8	 Payload—Information Theft—Keyloggers, Phishing, Spyware

10.9	 Payload—Stealthing—Backdoors, Rootkits

10.10	 Countermeasures

10.11	 Distributed Denial of Service Attacks

10.12	 Key Terms, Review Questions, and Problems

Malicious Software

Part 3: System Security

Chapter

M10_STAL4855_06_GE_C10.indd 337 8/29/16 1:27 PM

338   chapter 10 / Malicious Software

Malicious software, or malware, arguably constitutes one of the most significant
categories of threats to computer systems. SP 800-83 (Guide to Malware Incident
Prevention and Handling for Desktops and Laptops, July 2013) defines malware
as “a program that is covertly inserted into another program with the intent to de-
stroy data, run destructive or intrusive programs, or otherwise compromise the con-
fidentiality, integrity, or availability of the victim’s data, applications, or operating
system.” Hence, we are concerned with the threat malware poses to application
programs, to utility programs, such as editors and compilers, and to kernel-level
programs. We are also concerned with its use on compromised or malicious Web
sites and servers, or in especially crafted spam e-mails or other messages, which aim
to trick users into revealing sensitive personal information.

This chapter1 examines the wide spectrum of malware threats and counter-
measures. We begin with a survey of various types of malware and offer a broad
classification based first on the means malware uses to spread or propagate, and
then on the variety of actions or payloads used once the malware has reached a
target. Propagation mechanisms include those used by viruses, worms, and trojans.
Payloads include system corruption, bots, phishing, spyware, and rootkits. The dis-
cussion then includes a review of countermeasure approaches. Finally, distributed
denial-of-service (DDoS) attacks are reviewed.

	 10.1	Types of Malicious Software (Malware)

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 10.1 is a
useful guide to some of the terms in use.

1I am indebted to Lawrie Brown of the Australian Defence Force Academy, who contributed substan-
tially to this chapter.

Learning Objectives

After studying this chapter, you should be able to:

■■ Describe three broad mechanisms malware uses to propagate.

■■ Understand the basic operation of viruses, worms, and trojans.

■■ Describe four broad categories of malware payloads.

■■ Understand the different threats posed by bots, spyware, and rootkits.

■■ Describe some malware countermeasure elements.

■■ Describe three locations for malware detection mechanisms.

M10_STAL4855_06_GE_C10.indd 338 8/29/16 1:27 PM

10.1 / Types of Malicious Software (Malware)  339

A Broad Classification of Malware

Although a range of schemes can be used, one useful approach classifies malware into
two broad categories, based first on how it spreads or propagates to reach the desired
targets and then on the actions or payloads it performs once a target is reached.

Propagation mechanisms include infection of existing executable or interpreted
content by viruses that is subsequently spread to other systems; exploit of software
vulnerabilities either locally or over a network by worms or drive-by-downloads to
allow the malware to replicate; and social engineering attacks that convince users to
bypass security mechanisms to install trojans or to respond to phishing attacks.

Name Description

Virus Malware that, when executed, tries to replicate itself into other executable code; when it
succeeds the code is said to be infected. When the infected code is executed, the virus also
executes.

Worm A computer program that can run independently and can propagate a complete working
version of itself onto other hosts on a network.

Logic bomb A program inserted into software by an intruder. A logic bomb lies dormant until a
predefined condition is met; the program then triggers an unauthorized act.

Trojan horse A computer program that appears to have a useful function, but also has a hidden and
potentially malicious function that evades security mechanisms, sometimes by exploiting
legitimate authorizations of a system entity that invokes the Trojan horse program.

Backdoor
(trapdoor)

Any mechanism that bypasses a normal security check; it may allow unauthorized access
to functionality.

Mobile code Software (e.g., script, macro, or other portable instruction) that can be shipped unchanged
to a heterogeneous collection of platforms and execute with identical semantics.

Exploits Code specific to a single vulnerability or set of vulnerabilities.

Downloaders Program that installs other items on a machine that is under attack. Usually, a downloader
is sent in an e-mail.

Auto-rooter Malicious hacker tools used to break into new machines remotely.

Kit (virus
generator)

Set of tools for generating new viruses automatically.

Spammer
programs

Used to send large volumes of unwanted e-mail.

Flooders Used to attack networked computer systems with a large volume of traffic to carry out a
denial-of-service (DoS) attack.

Keyloggers Captures keystrokes on a compromised system.

Rootkit Set of hacker tools used after attacker has broken into a computer system and gained
root-level access.

Zombie, bot Program activated on an infected machine that is activated to launch attacks on other
machines.

Spyware Software that collects information from a computer and transmits it to another system.

Adware Advertising that is integrated into software. It can result in pop-up ads or redirection of a
browser to a commercial site.

Table 10.1  Terminology for Malicious Software

M10_STAL4855_06_GE_C10.indd 339 8/29/16 1:27 PM

340   chapter 10 / Malicious Software

Earlier approaches to malware classification distinguished between those that
need a host program, being parasitic code such as viruses, and those that are inde-
pendent, self-contained programs run on the system such as worms, trojans, and
bots. Another distinction used was between malware that does not replicate, such as
trojans and spam e-mail, and malware that does, including viruses and worms.

Payload actions performed by malware once it reaches a target system can in-
clude corruption of system or data files; theft of service in order to make the system
a zombie agent of attack as part of a botnet; theft of information from the system,
especially of logins, passwords, or other personal details by keylogging or spyware
programs; and stealthing where the malware hides its presence on the system from
attempts to detect and block it.

While early malware tended to use a single means of propagation to deliver a
single payload, as it evolved we see a growth of blended malware that incorporates a
range of both propagation mechanisms and payloads that increase its ability to spread,
hide, and perform a range of actions on targets. A blended attack uses multiple meth-
ods of infection or propagation, to maximize the speed of contagion and the sever-
ity of the attack. Some malware even support an update mechanism that allows it to
change the range of propagation and payload mechanisms utilized once it is deployed.

In the following sections, we survey these various categories of malware, and
then follow with a discussion of appropriate countermeasures.

Attack Kits

Initially, the development and deployment of malware required considerable tech-
nical skill by software authors. This changed with the development of virus-creation
toolkits in the early 1990s, and then later of more general attack kits in the 2000s, that
greatly assisted in the development and deployment of malware [FOSS10]. These
toolkits, often known as crimeware, now include a variety of propagation mecha-
nisms and payload modules that even novices can combine, select, and deploy.

They can also easily be customized with the latest discovered vulnerabilities in
order to exploit the window of opportunity between the publication of a weakness
and the widespread deployment of patches to close it. These kits greatly enlarged
the population of attackers able to deploy malware. Although the malware created
with such toolkits tends to be less sophisticated than that designed from scratch, the
sheer number of new variants that can be generated by attackers using these tool-
kits creates a significant problem for those defending systems against them.

The Zeus crimeware toolkit is a prominent, recent example of such an attack
kit, which was used to generate a wide range of very effective, stealthed malware
that facilitates a range of criminal activities, in particular capturing and exploit-
ing banking credentials [BINS10]. Other widely used toolkits include Blackhole,
Sakura, and Phoenix [SYMA13].

Attack Sources

Another significant malware development over the last couple of decades is the
change from attackers being individuals, often motivated to demonstrate their
technical competence to their peers, to more organized and dangerous attack
sources. These include politically motivated attackers, criminals, and organized

M10_STAL4855_06_GE_C10.indd 340 8/29/16 1:27 PM

10.2 / Advanced Persistent Threat  341

crime; organizations that sell their services to companies and nations; and national
government agencies. This has significantly changed the resources available and
motivation behind the rise of malware, and indeed has led to development of a
large underground economy involving the sale of attack kits, access to compro-
mised hosts, and to stolen information.

	 10.2	Advanced Persistent Threat

Advanced Persistent Threats (APTs) have risen to prominence in recent years.
These are not a new type of malware, but rather the well-resourced, persistent
application of a wide variety of intrusion technologies and malware to selected tar-
gets, usually business or political. APTs are typically attributed to state-sponsored
organizations, with some attacks likely from criminal enterprises as well. We discuss
these categories of intruders further in Chapter 11.

APTs differ from other types of attack by their careful target selection, and
persistent, often stealthy, intrusion efforts over extended periods. A number of
high profile attacks, including Aurora, RSA, APT1, and Stuxnet, are often cited as
examples. They are named as a result of these characteristics:

■■ Advanced: Used by the attackers of a wide variety of intrusion technologies
and malware, including the development of custom malware if required. The
individual components may not necessarily be technically advanced, but are
carefully selected to suit the chosen target.

■■ Persistent: Determined application of the attacks over an extended period
against the chosen target in order to maximize the chance of success. A variety
of attacks may be progressively, and often stealthily, applied until the target is
compromised.

■■ Threats: Threats to the selected targets as a result of the organized, capable,
and well-funded attackers intent to compromise the specifically chosen tar-
gets. The active involvement of people in the process greatly raises the threat
level from that due to automated attacks tools and the likelihood of successful
attack.

The aim of these attacks varies from theft of intellectual property or secu-
rity and infrastructure related data, to the physical disruption of infrastructure.
Techniques used include social engineering, spear-phishing e-mails, drive-by-
downloads from selected compromised Web sites likely to be visited by personnel
in the target organization, to infect the target with sophisticated malware with mul-
tiple propagation mechanisms and payloads. Once they have gained initial access
to systems in the target organization, a further range of attack tools are used to
maintain and extend their access.

As a result, these attacks are much harder to defend against due to this spe-
cific targeting and persistence. It requires a combination of technical countermea-
sures, such as we discuss later in this chapter, as well as awareness training to assist
personnel to resist such attacks. Even with current best-practice countermeasures,
the use of zero-day exploits and new attack approaches means that some of these

M10_STAL4855_06_GE_C10.indd 341 8/29/16 1:27 PM

342   chapter 10 / Malicious Software

attacks are likely to succeed [SYMA13, MAND13]. Thus multiple layers of defense
are needed, with mechanisms to detect, respond and mitigate such attacks. These
may include monitoring for malware command and control traffic, and detection of
exfiltration traffic.

	 10.3	Propagation—Infected Content—Viruses

The first category of malware propagation concerns parasitic software fragments
that attach themselves to some existing executable content. The fragment may be
machine code that infects some existing application, utility, or system program, or
even the code used to boot a computer system. More recently, the fragment has
been some form of scripting code, typically used to support active content within
data files such as Microsoft Word documents, Excel spreadsheets, or Adobe PDF
documents.

The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs, or indeed
any type of executable content, by modifying them. The modification includes in-
jecting the original code with a routine to make copies of the virus code, which can
then go on to infect other content.

A computer virus carries in its instructional code the recipe for making perfect
copies of itself. The typical virus becomes embedded in a program, or carrier of
executable content, on a computer. Then, whenever the infected computer comes
into contact with an uninfected piece of code, a fresh copy of the virus passes into
the new location. Thus, the infection can spread from computer to computer, aided
by unsuspecting users, who exchange these programs or carrier files on disk or USB
stick, or who send them to one another over a network. In a network environment,
the ability to access documents, applications, and system services on other comput-
ers provides a perfect culture for the spread of such viral code.

A virus that attaches to an executable program can do anything that the pro-
gram is permitted to do. It executes secretly when the host program is run. Once
the virus code is executing, it can perform any function, such as erasing files and
programs, that is allowed by the privileges of the current user. One reason viruses
dominated the malware scene in earlier years was the lack of user authentication
and access controls on personal computer systems at that time. This enabled a virus
to infect any executable content on the system. The significant quantity of programs
shared on floppy disk also enabled its easy, if somewhat slow, spread. The inclusion
of tighter access controls on modern operating systems significantly hinders the ease
of infection of such traditional, machine-executable code, viruses. This resulted in
the development of macro viruses that exploit the active content supported by some
document types, such as Microsoft Word or Excel files, or Adobe PDF documents.
Such documents are easily modified and shared by users as part of their normal sys-
tem use and are not protected by the same access controls as programs. Currently,
a viral mode of infection is typically one of several propagation mechanisms used
by contemporary malware, which may also include worm and Trojan capabilities.

M10_STAL4855_06_GE_C10.indd 342 8/29/16 1:27 PM

10.3 / Propagation—Infected Content—Viruses  343

A computer virus, and more generally many contemporary types of malware,
includes one or more variants of each of these components:

■■ Infection mechanism: The means by which a virus spreads or propagates, en-
abling it to replicate. The mechanism is also referred to as the infection vector.

■■ Trigger: The event or condition that determines when the payload is activated
or delivered, sometimes known as a logic bomb.

■■ Payload: What the virus does, besides spreading. The payload may involve
damage or benign but noticeable activity.

During its lifetime, a typical virus goes through the following four phases:

■■ Dormant phase: The virus is idle. The virus will eventually be activated by
some event, such as a date, the presence of another program or file, or the ca-
pacity of the disk exceeding some limit. Not all viruses have this stage.

■■ Propagation phase: The virus places a copy of itself into other programs or
into certain system areas on the disk. The copy may not be identical to the
propagating version; viruses often morph to evade detection. Each infected
program will now contain a clone of the virus, which will itself enter a propaga-
tion phase.

■■ Triggering phase: The virus is activated to perform the function for which it
was intended. As with the dormant phase, the triggering phase can be caused
by a variety of system events, including a count of the number of times that this
copy of the virus has made copies of itself.

■■ Execution phase: The function is performed. The function may be harmless,
such as a message on the screen, or damaging, such as the destruction of pro-
grams and data files.

Most viruses that infect executable program files carry out their work in a
manner that is specific to a particular operating system and, in some cases, specific
to a particular hardware platform. Thus, they are designed to take advantage of the
details and weaknesses of particular systems. Macro viruses, though, target specific
document types, which are often supported on a variety of systems.

Executable Virus Structure  Traditional machine-executable virus code can be
prepended or postpended to some executable program, or it can be embedded into
the program in some other fashion. The key to its operation is that the infected pro-
gram, when invoked, will first execute the virus code and then execute the original
code of the program.

A very general depiction of virus structure is shown in Figure 10.1a. In this
case, the virus code, V, is prepended to infected programs, and it is assumed that the
entry point to the program, when invoked, is the first line of the program.

The infected program begins with the virus code and works as follows. The first
line of code labels the program, which then begins execution with the main action
block of the virus. The second line is a special marker that is used by the virus to
determine whether or not a potential victim program has already been infected with
this virus. When the program is invoked, control is immediately transferred to the
main virus program. The virus program may first seek out uninfected executable
files and infect them. Next, the virus may execute its payload if the required trigger

M10_STAL4855_06_GE_C10.indd 343 8/29/16 1:27 PM

344   chapter 10 / Malicious Software

conditions, if any, are met. Finally, the virus transfers control to the original program.
If the infection phase of the program is reasonably rapid, a user is unlikely to notice
any difference between the execution of an infected and an uninfected program.

A virus such as the one just described is easily detected because an infected
version of a program is longer than the corresponding uninfected one. A way to
thwart such a simple means of detecting a virus is to compress the executable file so
that both the infected and uninfected versions are of identical length. Figure 10.1b
shows in general terms the logic required. The key lines in this virus are labeled with
times, and Figure 10.2 illustrates the operation. We begin at time t0, with program
P1
= , which is program P1 infected with virus CV, and a clean program P2, which is not

infected with CV. When P1 is invoked, control passes to its virus, which performs
the following steps:

t1: For each uninfected file P2 that is found, the virus first compresses that file to
produce P2

= , which is shorter than the original program by the size of the virus CV.

t2: A copy of CV is prepended to the compressed program.

t3: The compressed version of the original infected program, P1
= is uncompressed.

t4: The uncompressed original program P1 is executed.

In this example, the virus does nothing other than propagate. As previously
mentioned, the virus may also include one or more payloads.

Once a virus has gained entry to a system by infecting a single program, it is
in a position to potentially infect some or all other executable files on that system

program V
1234567;

procedure attach-to-program;
begin

repeat
file := get-random-program;

until first-program-line ≠ 1234567;
prepend V to file;

end;

procedure execute-payload;
begin

(* perform payload actions *)
end;

procedure trigger-condition;
begin

(* return true if trigger condition is true *)
end;

begin (* main action block *)
attach-to-program;
if trigger-condition then execute-payload;
goto main;

end;

program CV
1234567;

procedure attach-to-program;
begin

repeat
file := get-random-program;

until first-program-line ≠ 1234567;
compress file; (* t1 *)
prepend CV to file; (* t2 *)

end;

procedure (* main action block *)
if ask-permission then attach-to-program;
uncompress rest of this file into tempfile; (* t3 *)
execute tempfile; (* t4 *)

end;

(a) A simple virus (b) A compression virus

Figure 10.1  Example Virus Logic

M10_STAL4855_06_GE_C10.indd 344 8/29/16 1:27 PM

10.3 / Propagation—Infected Content—Viruses  345

when the infected program executes, depending on the access permissions the
infected program has. Thus, viral infection can be completely prevented by blocking
the virus from gaining entry in the first place. Unfortunately, prevention is extraor-
dinarily difficult because a virus can be part of any program outside a system. Thus,
unless one is content to take an absolutely bare piece of iron and write all one’s own
system and application programs, one is vulnerable. Many forms of infection can
also be blocked by denying normal users the right to modify programs on the system.

Viruses Classification

There has been a continuous arms race between virus writers and writers of antivi-
rus software since viruses first appeared. As effective countermeasures are devel-
oped for existing types of viruses, newer types are developed. There is no simple or
universally agreed-upon classification scheme for viruses. In this section, we follow
[AYCO06] and classify viruses along two orthogonal axes: the type of target the
virus tries to infect and the method the virus uses to conceal itself from detection by
users and antivirus software.

Figure 10.2  A Compression Virus

P2

t0: P1¿ is infected version of P1;
P2 is clean

CV

P2

t1: P2 is compressed into P2¿

t2: CV attaches itself to P2¿

CV CV

t3: P1¿ is decompressed into the
original program P1

CV

P1
œ

P1P1
œ P1

œP2
œ

P2
œ

M10_STAL4855_06_GE_C10.indd 345 8/29/16 1:28 PM

346   chapter 10 / Malicious Software

A virus classification by target includes the following categories:

■■ Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

■■ File infector: Infects files that the operating system or shell consider to be
executable.

■■ Macro virus: Infects files with macro or scripting code that is interpreted by an
application.

■■ Multipartite virus: Infects files in multiple ways. Typically, the multipartite
virus is capable of infecting multiple types of files, so that virus eradication
must deal with all of the possible sites of infection.

A virus classification by concealment strategy includes the following categories:

■■ Encrypted virus: A typical approach is as follows. A portion of the virus cre-
ates a random encryption key and encrypts the remainder of the virus. The key
is stored with the virus. When an infected program is invoked, the virus uses
the stored random key to decrypt the virus. When the virus replicates, a differ-
ent random key is selected. Because the bulk of the virus is encrypted with a
different key for each instance, there is no constant bit pattern to observe.

■■ Stealth virus: A form of virus explicitly designed to hide itself from detection
by antivirus software. Thus, the entire virus, not just a payload, is hidden. It
may use both code mutation, for example, compression, and rootkit techniques
to achieve this.

■■ Polymorphic virus: A form of virus that creates copies during replication that
are functionally equivalent but have distinctly different bit patterns, in order
to defeat programs that scan for viruses. In this case, the “signature” of the
virus will vary with each copy. To achieve this variation, the virus may ran-
domly insert superfluous instructions or interchange the order of independent
instructions. A more effective approach is to use encryption. The strategy of
the encryption virus is followed. The portion of the virus that is responsible
for generating keys and performing encryption/decryption is referred to as the
mutation engine. The mutation engine itself is altered with each use.

■■ Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites
itself completely at each iteration, increasing the difficulty of detection.
Metamorphic viruses may change their behavior as well as their appearance.

Macro and Scripting Viruses

Macro viruses infect scripting code used to support active content in a variety of
user document types. Macro viruses are particularly threatening for a number of
reasons:

1.	 A macro virus is platform independent. Many macro viruses infect active con-
tent in commonly used applications, such as macros in Microsoft Word docu-
ments or other Microsoft Office documents, or scripting code in Adobe PDF

M10_STAL4855_06_GE_C10.indd 346 8/29/16 1:28 PM

10.4 / Propagation—Vulnerability Exploit—Worms  347

documents. Any hardware platform and operating system that supports these
applications can be infected.

2.	 Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of documents
rather than programs.

3.	 Macro viruses are easily spread, as the documents they exploit are shared in
normal use. A very common method is by electronic mail.

4.	 Because macro viruses infect user documents rather than system programs,
traditional file system access controls are of limited use in preventing their
spread, since users are expected to modify them.

Macro viruses take advantage of support for active content using a scripting
or macro language, embedded in a word processing document or other type of file.
Typically, users employ macros to automate repetitive tasks and thereby save key-
strokes. They are also used to support dynamic content, form validation, and other
useful tasks associated with these documents.

Successive releases of MS Office products provide increased protection against
macro viruses. For example, Microsoft offers an optional Macro Virus Protection
tool that detects suspicious Word files and alerts the customer to the potential risk
of opening a file with macros. Various antivirus product vendors have also devel-
oped tools to detect and remove macro viruses. As in other types of viruses, the
arms race continues in the field of macro viruses, but they no longer are the pre-
dominant virus threat.

Another possible host for macro virus–style malware is in Adobe’s PDF
documents. These can support a range of embedded components, including
Javascript and other types of scripting code. Although recent PDF viewers include
measures to warn users when such code is run, the message the user is shown can
be manipulated to trick them into permitting its execution. If this occurs, the code
could potentially act as a virus to infect other PDF documents the user can access
on his or her system. Alternatively, it can install a Trojan, or act as a worm, as we
discuss later.

	 10.4	Propagation—Vulnerability Exploit—Worms

A worm is a program that actively seeks out more machines to infect, and then
each infected machine serves as an automated launching pad for attacks on other
machines. Worm programs exploit software vulnerabilities in client or server
programs to gain access to each new system. They can use network connections to
spread from system to system. They can also spread through shared media, such
as USB drives or optical data disks. E-mail worms spread in macro or script code
included in documents attached to e-mail or to instant messenger file transfers.
Upon activation, the worm may replicate and propagate again. In addition to
propagation, the worm usually carries some form of payload, such as those we
discuss later.

M10_STAL4855_06_GE_C10.indd 347 8/29/16 1:28 PM

348   chapter 10 / Malicious Software

To replicate itself, a worm uses some means to access remote systems. These
include the following, most of which are still seen in active use [SYMA13]:

■■ Electronic mail or instant messenger facility: A worm e-mails a copy of itself
to other systems or sends itself as an attachment via an instant message
service, so that its code is run when the e-mail or attachment is received or
viewed.

■■ File sharing: A worm either creates a copy of itself or infects other suitable
files as a virus on removable media such as a USB drive; it then executes when
the drive is connected to another system using the autorun mechanism by ex-
ploiting some software vulnerability or when a user opens the infected file on
the target system.

■■ Remote execution capability: A worm executes a copy of itself on another
system, either by using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations.

■■ Remote file access or transfer capability: A worm uses a remote file access or
transfer service to another system to copy itself from one system to the other,
where users on that system may then execute it.

■■ Remote login capability: A worm logs onto a remote system as a user and
then uses commands to copy itself from one system to the other, where it then
executes.

The new copy of the worm program is then run on the remote system where,
in addition to any payload functions that it performs on that system, it continues to
propagate.

A worm typically uses the same phases as a computer virus: dormant, propa-
gation, triggering, and execution. The propagation phase generally performs the
following functions:

■■ Search for appropriate access mechanisms to other systems to infect by exam-
ining host tables, address books, buddy lists, trusted peers, and other similar
repositories of remote system access details; by scanning possible target host
addresses; or by searching for suitable removable media devices to use.

■■ Use the access mechanisms found to transfer a copy of itself to the remote
system and cause the copy to be run.

The worm may also attempt to determine whether a system has previously
been infected before copying itself to the system. In a multiprogramming system,
it can also disguise its presence by naming itself as a system process or using some
other name that may not be noticed by a system operator. More recent worms can
even inject their code into existing processes on the system and run using additional
threads in that process, to further disguise their presence.

Target Discovery

The first function in the propagation phase for a network worm is for it to search
for other systems to infect, a process known as scanning or fingerprinting. For
such worms, which exploit software vulnerabilities in remotely accessible network

M10_STAL4855_06_GE_C10.indd 348 8/29/16 1:28 PM

10.4 / Propagation—Vulnerability Exploit—Worms  349

services, it must identify potential systems running the vulnerable service, and then
infect them. Then, typically, the worm code now installed on the infected machines
repeats the same scanning process, until a large distributed network of infected
machines is created.

[MIRK04] lists the following types of network address scanning strategies that
such a worm can use:

■■ Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of Internet
traffic, which may cause generalized disruption even before the actual attack
is launched.

■■ Hit list: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that an
attack is underway. Once the list is compiled, the attacker begins infecting ma-
chines on the list. Each infected machine is provided with a portion of the list
to scan. This strategy results in a very short scanning period, which may make
it difficult to detect that infection is taking place.

■■ Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

■■ Local subnet: If a host is infected behind a firewall, that host then looks for
targets in its own local network. The host uses the subnet address structure to
find other hosts that would otherwise be protected by the firewall.

Worm Propagation Model

A well-designed worm can spread rapidly and infect massive numbers of hosts. It is
useful to have a general model for the rate of worm propagation. Computer viruses
and worms exhibit similar self-replication and propagation behavior to biological
viruses. Thus we can look to classic epidemic models for understanding computer
virus and worm propagation behavior. A simplified, classic epidemic model can be
expressed as follows:

dI(t)

dt
= bI(t)S(t)

where

I(t) = number of individuals infected as of time t
S(t) = �number of susceptible individuals (susceptible to infection but not yet

infected) at time t
b = infection rate
N = size of the population, N = I(t) + S(t)

Figure 10.3 shows the dynamics of worm propagation using this model.
Propagation proceeds through three phases. In the initial phase, the number of hosts
increases exponentially. To see that this is so, consider a simplified case in which a
worm is launched from a single host and infects two nearby hosts. Each of these

M10_STAL4855_06_GE_C10.indd 349 8/29/16 1:28 PM

350   chapter 10 / Malicious Software

hosts infects two more hosts, and so on. This results in exponential growth. After
a time, infecting hosts waste some time attacking already-infected hosts, which
reduces the rate of infection. During this middle phase, growth is approximately
linear, but the rate of infection is rapid. When most vulnerable computers have
been infected, the attack enters a slow finish phase as the worm seeks out those
remaining hosts that are difficult to identify.

Clearly, the objective in countering a worm is to catch the worm in its slow
start phase, at a time when few hosts have been infected.

Zou and others [ZOU05] describe a model for worm propagation based on
an analysis of network worm attacks at that time. The speed of propagation and
the total number of hosts infected depend on a number of factors, including the
mode of propagation, the vulnerability or vulnerabilities exploited, and the degree
of similarity to preceding attacks. For the latter factor, an attack that is a variation
of a recent previous attack may be countered more effectively than a more novel
attack. Zou’s model agrees closely with Figure 10.3.

The Morris Worm

The earliest significant worm infection was released onto the Internet by Robert
Morris in 1988 [ORMA03]. The Morris worm was designed to spread on UNIX
systems and used a number of different techniques for propagation. When a copy
began execution, its first task was to discover other hosts known to this host that
would allow entry from this host. The worm performed this task by examining a
variety of lists and tables, including system tables that declared which other ma-
chines were trusted by this host, users’ mail forwarding files, tables by which users
gave themselves permission for access to remote accounts, and from a program that

Figure 10.3  Worm Propagation Model

0.2

0

Slow start phase

Fraction of
hosts infected

Fraction of
hosts not
infected

Time

0.4

0.6

0.8

1.0

Fast spread sphase Slow �nish phase

M10_STAL4855_06_GE_C10.indd 350 8/29/16 1:28 PM

10.4 / Propagation—Vulnerability Exploit—Worms  351

reported the status of network connections. For each discovered host, the worm
tried a number of methods for gaining access:

1.	 It attempted to log on to a remote host as a legitimate user. In this method,
the worm first attempted to crack the local password file and then used the
discovered passwords and corresponding user IDs. The assumption was that
many users would use the same password on different systems. To obtain the
passwords, the worm ran a password-cracking program that tried

a.	 Each user’s account name and simple permutations of it

b.	 A list of 432 built-in passwords that Morris thought to be likely candidates2

c.	 All the words in the local system dictionary

4.	 It exploited a bug in the UNIX finger protocol, which reports the whereabouts
of a remote user.

5.	 It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short boot-
strap program, issued a command to execute that program, and then logged off.
The bootstrap program then called back the parent program and downloaded the
remainder of the worm. The new worm was then executed.

State of Worm Technology

The state of the art in worm technology includes the following:

■■ Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX, or
exploit macro or scripting languages supported in popular document types.

■■ Multiexploit: New worms penetrate systems in a variety of ways, using exploits
against Web servers, browsers, e-mail, file sharing, and other network-based
applications, or via shared media.

■■ Ultrafast spreading: Exploit various techniques to optimize the rate of spread
of a worm to maximize its likelihood of locating as many vulnerable machines
as possible in a short time period.

■■ Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt the virus polymorphic technique. Each copy of the worm has
new code generated on the fly using functionally equivalent instructions and
encryption techniques.

■■ Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

■■ Transport vehicles: Because worms can rapidly compromise a large number
of systems, they are ideal for spreading a wide variety of malicious payloads,

2The complete list is provided at this book’s Premium Content Web site.

M10_STAL4855_06_GE_C10.indd 351 8/29/16 1:28 PM

352   chapter 10 / Malicious Software

such as distributed denial-of-service bots, rootkits, spam e-mail generators, and
spyware.

■■ Zero-day exploit: To achieve maximum surprise and distribution, a worm
should exploit an unknown vulnerability that is only discovered by the general
network community when the worm is launched.

Mobile Code

SP 800-28 (Guidelines on Active Content and Mobile Code, March 2008) defines
mobile code as programs (e.g., script, macro, or other portable instruction) that can
be shipped unchanged to a heterogeneous collection of platforms and execute with
identical semantics.

Mobile code is transmitted from a remote system to a local system and then
executed on the local system without the user’s explicit instruction. Mobile code
often acts as a mechanism for a virus, worm, or Trojan horse to be transmitted
to the user’s workstation. In other cases, mobile code takes advantage of vulner-
abilities to perform its own exploits, such as unauthorized data access or root
compromise. Popular vehicles for mobile code include Java applets, ActiveX,
JavaScript, and VBScript. The most common ways of using mobile code for mali-
cious operations on local system are cross-site scripting, interactive and dynamic
Web sites, e-mail attachments, and downloads from untrusted sites or of un-
trusted software.

Client-Side Vulnerabilities and Drive-by-Downloads

Another approach to exploiting software vulnerabilities involves the exploit of
bugs in user applications to install malware. One common approach to this exploits
browser vulnerabilities so that when the user views a Web page controlled by the
attacker, it contains code that exploits the browser bug to download and install mal-
ware on the system without the user’s knowledge or consent. This is known as a
drive-by-download and is a common exploit in recent attack kits. In most cases this
malware does not actively propagate as a worm does, but rather waits for unsus-
pecting users to visit the malicious Web page in order to spread to their systems.

In general, drive-by-download attacks are aimed at anyone who visits a com-
promised site and is vulnerable to the exploits used. Watering-hole attacks are a vari-
ant of this used in highly targeted attacks. The attacker researches their intended
victims to identify Web sites they are likely to visit and then scans these sites to iden-
tify those with vulnerabilities that allow their compromise with a drive-by-download
attack. They then wait for one of their intended victims to visit one of the compro-
mised sites. Their attack code may even be written so that it will only infect systems
belonging to the target organization and take no action for other visitors to the site.
This greatly increases the likelihood of the site compromise remaining undetected.

Malvertising is another technique used to place malware on Web sites without
actually compromising them. The attacker pays for advertisements that are highly
likely to be placed on their intended target Web sites, and which incorporate mal-
ware in them. Using these malicious adds, attackers can infect visitors to sites dis-
playing them. Again, the malware code may be dynamically generated to either
reduce the chance of detection or only infect specific systems.

M10_STAL4855_06_GE_C10.indd 352 8/29/16 1:28 PM

10.5 / Propagation—Social Engineering—Spam e-mail, Trojans  353

Related variants can exploit bugs in common e-mail clients, such as the Klez
mass-mailing worm seen in October 2001, which targeted a bug in the HTML han-
dling in Microsoft’s Outlook and Outlook Express programs to automatically run
itself. Or, such malware may target common PDF viewers to also download and
install malware without the user’s consent, when they view a malicious PDF docu-
ment [STEV11]. Such documents may be spread by spam e-mail or be part of a
targeted phishing attack, as we discuss next.

Clickjacking

Clickjacking, also known as a user-interface (UI) redress attack, is a vulnerability
used by an attacker to collect an infected user’s clicks. The attacker can force the
user to do a variety of things from adjusting the user’s computer settings to unwit-
tingly sending the user to Web sites that might have malicious code. Also, by tak-
ing advantage of Adobe Flash or JavaScript, an attacker could even place a button
under or over a legitimate button, making it difficult for users to detect. A typical
attack uses multiple transparent or opaque layers to trick a user into clicking on a
button or link on another page when they were intending to click on the top level
page. Thus, the attacker is hijacking clicks meant for one page and routing them to
another page, most likely owned by another application, domain, or both.

Using a similar technique, keystrokes can also be hijacked. With a carefully
crafted combination of stylesheets, iframes, and text boxes, a user can be led to
believe they are typing in the password to their e-mail or bank account but are
instead typing into an invisible frame controlled by the attacker.

There is a wide variety of techniques for accomplishing a clickjacking attack,
and new techniques are developed as defenses to older techniques are put in place.
[NIEM11] and [STON10] are useful discussions.

	 10.5	Propagation—Social Engineering—Spam
e-mail, Trojans

The final category of malware propagation we consider involves social engineer-
ing, “tricking” users to assist in the compromise of their own systems or personal
information. This can occur when a user views and responds to some SPAM
e-mail or permits the installation and execution of some Trojan horse program or
scripting code.

Spam (Unsolicited Bulk) E-Mail

Unsolicited bulk e-mail, commonly known as spam, imposes significant costs on
both the network infrastructure needed to relay this traffic and on users who need
to filter their legitimate e-mails out of this flood. In response to the explosive growth
in spam, there has been the equally rapid growth of the antispam industry, which
provides products to detect and filter spam e-mails. This has led to an arms race
between the spammers devising techniques to sneak their content through and the
defenders taking efforts to block them. In recent years, the volume of spam e-mail
has started to decline. One reason is the rapid growth of attacks, including spam,

M10_STAL4855_06_GE_C10.indd 353 8/29/16 1:28 PM

354   chapter 10 / Malicious Software

spread via social media networks. This reflects the rapid growth in use of these net-
works, which form a new arena for attackers to exploit [SYMA13].

While some spam is sent from legitimate mail servers, most recent spam is
sent by botnets using compromised user systems, as we discuss in Section 10.6. A
significant portion of spam e-mail content is just advertising, trying to convince the
recipient to purchase some product online, or used in scams, such as stock scams or
money mule job ads. But spam is also a significant carrier of malware. The e-mail
may have an attached document, which, if opened, may exploit a software vulner-
ability to install malware on the user’s system, as we discussed in the previous sec-
tion. Or, it may have an attached Trojan horse program or scripting code that, if
run, also installs malware on the user’s system. Some trojans avoid the need for user
agreement by exploiting a software vulnerability in order to install themselves, as
we discuss next. Finally the spam may be used in a phishing attack, typically direct-
ing the user either to a fake Web site that mirrors some legitimate service, such
as an online banking site, where it attempts to capture the user’s login and pass-
word details, or to complete some form with sufficient personal details to allow the
attacker to impersonate the user in an identity theft. All of these uses make spam
e-mails a significant security concern. However, in many cases it requires the user’s
active choice to view the e-mail and any attached document or to permit the instal-
lation of some program, in order for the compromise to occur.

Trojan Horses

A Trojan horse is a useful, or apparently useful, program or utility containing hid-
den code that, when invoked, performs some unwanted or harmful function.

Trojan horse programs can be used to accomplish functions indirectly that
the attacker could not accomplish directly. For example, to gain access to sensitive,
personal information stored in the files of a user, an attacker could create a Trojan
horse program that, when executed, scans the user’s files for the desired sensitive
information and sends a copy of it to the attacker via a Web form or e-mail or text
message. The author could then entice users to run the program by incorporating it
into a game or useful utility program and making it available via a known software
distribution site or app store. This approach has been used recently with utilities
that “claim” to be the latest antivirus scanner, or security update, for systems, but
which are actually malicious trojans, often carrying payloads such as spyware that
searches for banking credentials. Hence, users need to take precautions to validate
the source of any software they install.

Trojan horses fit into one of three models:

■■ Continuing to perform the function of the original program and additionally
performing a separate malicious activity

■■ Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process-listing program that does not display certain
processes that are malicious)

■■ Performing a malicious function that completely replaces the function of the
original program

M10_STAL4855_06_GE_C10.indd 354 8/29/16 1:28 PM

10.6 / Payload—System Corruption  355

Some trojans avoid the requirement for user assistance by exploiting some
software vulnerability to enable their automatic installation and execution. In this
they share some features of a worm, but unlike it, they do not replicate. A prominent
example of such an attack was the Hydraq Trojan used in Operation Aurora in 2009
and early 2010. This exploited a vulnerability in Internet Explorer to install itself
and targeted several high-profile companies [SYMA13]. It was typically distributed
either by spam e-mail or via a compromised Web site using a “drive-by-download.”

	 10.6	Payload—System Corruption

Once malware is active on the target system, the next concern is what actions it will
take on this system, that is, what payload does it carry. Some malware has a non-
existent or nonfunctional payload. Its only purpose, either deliberate or due to ac-
cidental early release, is to spread. More commonly, it carries one or more payloads
that perform covert actions for the attacker.

An early payload seen in a number of viruses and worms resulted in data destruc-
tion on the infected system when certain trigger conditions were met [WEAV03]. A
related payload is one that displays unwanted messages or content on the user’s system
when triggered. More seriously, another variant attempts to inflict real-world damage
on the system. All of these actions target the integrity of the computer system’s soft-
ware or hardware, or of the user’s data. These changes may not occur immediately, but
only when specific trigger conditions are met that satisfy their logic-bomb code.

As an alternative to just destroying data, some malware encrypts the user’s data
and demands payment in order to access the key needed to recover this information.
This is sometimes known as ransomware. The PC Cyborg Trojan seen in 1989 was an
early example of this. However, around mid-2006 a number of worms and trojans, such
as the Gpcode Trojan, that used public-key cryptography with increasingly larger key
sizes to encrypt data. The user needed to pay a ransom or to make a purchase from cer-
tain sites, in order to receive the key to decrypt this data. While earlier instances used
weaker cryptography that could be cracked without paying the ransom, the later ver-
sions using public-key cryptography with large key sizes could not be broken this way.

Real-World Damage

A further variant of system corruption payloads aims to cause damage to physi-
cal equipment. The infected system is clearly the device most easily targeted. The
Chernobyl virus not only corrupts data, it attempts to rewrite the BIOS code used
to initially boot the computer. If it is successful, the boot process fails, and the sys-
tem is unusable until the BIOS chip is either reprogrammed or replaced.

The Stuxnet worm targets some specific industrial control system software as
its key payload [CHEN11]. If control systems using certain Siemens industrial con-
trol software with a specific configuration of devices are infected, then the worm
replaces the original control code with code that deliberately drives the controlled
equipment outside its normal operating range, resulting in the failure of the attached
equipment. The centrifuges used in the Iranian uranium enrichment program were
strongly suspected as the target, with reports of much higher than normal failure
rates observed in them over the period when this worm was active. As noted in our

M10_STAL4855_06_GE_C10.indd 355 8/29/16 1:28 PM

356   chapter 10 / Malicious Software

earlier discussion, this has raised concerns over the use of sophisticated targeted
malware for industrial sabotage.

Logic Bomb

A key component of data-corrupting malware is the logic bomb. The logic bomb is
code embedded in the malware that is set to “explode” when certain conditions are
met. Examples of conditions that can be used as triggers for a logic bomb are the
presence or absence of certain files or devices on the system, a particular day of the
week or date, a particular version or configuration of some software, or a particular
user running the application. Once triggered, a bomb may alter or delete data or
entire files, cause a machine halt, or do some other damage. All of the examples we
describe in this section include such code.

	 10.7	Payload—Attack Agent—Zombie, Bots

The next category of payload we discuss is where the malware subverts the compu-
tational and network resources of the infected system for use by the attacker. Such a
system is known as a bot (robot), zombie, or drone, and secretly takes over another
Internet-attached computer and then uses that computer to launch or manage attacks
that are difficult to trace to the bot’s creator. The bot is typically planted on hundreds or
thousands of computers belonging to unsuspecting third parties. The collection of bots
often is capable of acting in a coordinated manner; such a collection is referred to as a
botnet. This type of payload attacks the integrity and availability of the infected system.

Uses of Bots

[HONE05] lists the following uses of bots:

■■ Distributed denial-of-service (DDoS) attacks: A DDoS attack is an attack on
a computer system or network that causes a loss of service to users. We exam-
ine DDoS attacks in Section 10.10.

■■ Spamming: With the help of a botnet and thousands of bots, an attacker is able
to send massive amounts of bulk e-mail (spam).

■■ Sniffing traffic: Bots can also use a packet sniffer to watch for interesting clear-
text data passing by a compromised machine. The sniffers are mostly used to
retrieve sensitive information like usernames and passwords.

■■ Keylogging: If the compromised machine uses encrypted communication
channels (e.g., HTTPS or POP3S), then just sniffing the network packets on
the victim’s computer is useless because the appropriate key to decrypt the
packets is missing. But by using a keylogger, which captures keystrokes on the
infected machine, an attacker can retrieve sensitive information.

■■ Spreading new malware: Botnets are used to spread new bots. This is very
easy since all bots implement mechanisms to download and execute a file via
HTTP or FTP. A botnet with 10,000 hosts that acts as the start base for a worm
or mail virus allows very fast spreading and thus causes more harm.

M10_STAL4855_06_GE_C10.indd 356 8/29/16 1:28 PM

10.8 / Payload—Information Theft—Keyloggers, Phishing, Spyware  357

■■ Installing advertisement add-ons and browser helper objects (BHOs): Botnets
can also be used to gain financial advantages. This works by setting up a fake
Web site with some advertisements: The operator of this Web site negotiates a
deal with some hosting companies that pay for clicks on ads. With the help of
a botnet, these clicks can be “automated” so that instantly a few thousand bots
click on the pop-ups. This process can be further enhanced if the bot hijacks
the start-page of a compromised machine so that the “clicks” are executed
each time the victim uses the browser.

■■ Attacking IRC chat networks: Botnets are also used for attacks against Internet
Relay Chat (IRC) networks. Popular among attackers is the so-called clone attack:
In this kind of attack, the controller orders each bot to connect a large number of
clones to the victim IRC network. The victim is flooded by service requests from
thousands of bots or thousands of channel-joins by these cloned bots. In this way,
the victim IRC network is brought down, similar to a DDoS attack.

■■ Manipulating online polls/games: Online polls/games are getting more and
more attention and it is rather easy to manipulate them with botnets. Since
every bot has a distinct IP address, every vote will have the same credibility as
a vote cast by a real person. Online games can be manipulated in a similar way.

Remote Control Facility

The remote control facility is what distinguishes a bot from a worm. A worm propa-
gates itself and activates itself, whereas a bot is controlled from some central facil-
ity, at least initially.

A typical means of implementing the remote control facility is on an IRC
server. All bots join a specific channel on this server and treat incoming messages
as commands. More recent botnets tend to avoid IRC mechanisms and use covert
communication channels via protocols such as HTTP. Distributed control mecha-
nisms, using peer-to-peer protocols, are also used, to avoid a single point of failure.

Once a communications path is established between a control module and the
bots, the control module can activate the bots. In its simplest form, the control mod-
ule simply issues command to the bot that causes the bot to execute routines that
are already implemented in the bot. For greater flexibility, the control module can
issue update commands that instruct the bots to download a file from some Internet
location and execute it. The bot in this latter case becomes a more general-purpose
tool that can be used for multiple attacks.

	 10.8	Payload—Information Theft—Keyloggers,
Phishing, Spyware

We now consider payloads where the malware gathers data stored on the infected
system for use by the attacker. A common target is the user’s login and password
credentials to banking, gaming, and related sites, which the attacker then uses to
impersonate the user to access these sites for gain. Less commonly, the payload may
target documents or system configuration details for the purpose of reconnaissance
or espionage. These attacks target the confidentiality of this information.

M10_STAL4855_06_GE_C10.indd 357 8/29/16 1:28 PM

358   chapter 10 / Malicious Software

Credential Theft, Keyloggers, and Spyware

Typically, users send their login and password credentials to banking, gaming, and
related sites over encrypted communication channels (e.g., HTTPS or POP3S),
which protect them from capture by monitoring network packets. To bypass this, an
attacker can install a keylogger, which captures keystrokes on the infected machine
to allow an attacker to monitor this sensitive information. Since this would result
in the attacker receiving a copy of all text entered on the compromised machine,
keyloggers typically implement some form of filtering mechanism that only returns
information close to desired keywords (e.g., “login” or “password” or “paypal.com”).

In response to the use of keyloggers, some banking and other sites switched
to using a graphical applet to enter critical information, such as passwords. Since
these do not use text entered via the keyboard, traditional keyloggers do not cap-
ture this information. In response, attackers developed more general spyware pay-
loads, which subvert the compromised machine to allow monitoring of a wide range
of activity on the system. This may include monitoring the history and content of
browsing activity, redirecting certain Web page requests to fake sites controlled by
the attacker, dynamically modifying data exchanged between the browser and cer-
tain Web sites of interest. All of which can result in significant compromise of the
user’s personal information.

Phishing and Identity Theft

Another approach used to capture a user’s login and password credentials is to in-
clude a URL in a spam e-mail that links to a fake Web site controlled by the at-
tacker, but which mimics the login page of some banking, gaming, or similar site.
This is normally included in some message suggesting that urgent action is required
by the user to authenticate his or her account, to prevent it being locked. If the user
is careless, and doesn’t realize that he or she is being conned, then following the link
and supplying the requested details will certainly result in the attackers exploiting
the user’s account using the captured credentials.

More generally, such a spam e-mail may direct a user to a fake Web site
controlled by the attacker or to complete some enclosed form and return to an
e-mail accessible to the attacker, which is used to gather a range of private, personal
information on the user. Given sufficient details, the attacker can then “assume”
the user’s identity for the purpose of obtaining credit or sensitive access to other
resources. This is known as a phishing attack, which exploits social engineering to
leverage user’s trust by masquerading as communications from a trusted source
[GOLD10].

Such general spam e-mails are typically widely distributed to very large num-
bers of users, often via a botnet. While the content will not match appropriate
trusted sources for a significant fraction of the recipients, the attackers rely on it
reaching sufficient users of the named trusted source, a gullible portion of whom
will respond, for it to be profitable.

A more dangerous variant of this is the spear-phishing attack. This again is an
e-mail claiming to be from a trusted source. However, the recipients are carefully
researched by the attacker, and each e-mail is carefully crafted to suit its recipi-
ent specifically, often quoting a range of information to convince him or her of its

M10_STAL4855_06_GE_C10.indd 358 8/29/16 1:28 PM

http://paypal.com

10.9 / Payload—Stealthing—Backdoors, Rootkits  359

authenticity. This greatly increases the likelihood of the recipient responding as de-
sired by the attacker.

Reconnaissance and Espionage

Credential theft and identity theft are special cases of a more general reconnais-
sance payload, which aims to obtain certain types of desired information and return
this to the attacker. These special cases are certainly the most common; however
other targets are known. Operation Aurora in 2009 used a Trojan to gain access
to and potentially modify source code repositories at a range of high-tech, secu-
rity, and defense contractor companies [SYMA13]. The Stuxnet worm discovered
in 2010 included capture of hardware and software configuration details in order to
determine whether it had compromised the specific desired target systems. Early
versions of this worm returned this same information, which was then used to
develop the attacks deployed in later versions [CHEN11].

	 10.9	Payload—Stealthing—Backdoors, Rootkits

The final category of payload we discuss concerns techniques used by malware to
hide its presence on the infected system and to provide covert access to that system.
This type of payload also attacks the integrity of the infected system.

Backdoor

A backdoor, also known as a trapdoor, is a secret entry point into a program that
allows someone who is aware of the backdoor to gain access without going through
the usual security access procedures. The backdoor is code that recognizes some
special sequence of input or is triggered by being run from a certain user ID or by an
unlikely sequence of events.

A backdoor is usually implemented as a network service listening on some
nonstandard port that the attacker can connect to and issue commands through to
be run on the compromised system.

It is difficult to implement operating system controls for backdoors in appli-
cations. Security measures must focus on the program development and software
update activities, and on programs that wish to offer a network service.

Rootkit

A rootkit is a set of programs installed on a system to maintain covert access to that
system with administrator (or root)3 privileges, while hiding evidence of its pres-
ence to the greatest extent possible. This provides access to all the functions and
services of the operating system. The rootkit alters the host’s standard functionality
in a malicious and stealthy way. With root access, an attacker has complete control
of the system and can add or change programs and files, monitor processes, send
and receive network traffic, and get backdoor access on demand.

3On UNIX systems, the administrator, or superuser, account is called root; hence the term root access.

M10_STAL4855_06_GE_C10.indd 359 8/29/16 1:28 PM

360   chapter 10 / Malicious Software

A rootkit can make many changes to a system to hide its existence, making
it difficult for the user to determine that the rootkit is present and to identify what
changes have been made. In essence, a rootkit hides by subverting the mechanisms
that monitor and report on the processes, files, and registries on a computer.

A rootkit can be classified using the following characteristics:

■■ Persistent: Activates each time the system boots. The rootkit must store code
in a persistent store, such as the registry or file system, and configure a method
by which the code executes without user intervention. This means it is easier to
detect, as the copy in persistent storage can potentially be scanned.

■■ Memory based: Has no persistent code and therefore cannot survive a reboot.
However, because it is only in memory, it can be harder to detect.

■■ User mode: Intercepts calls to APIs (application program interfaces) and
modifies returned results. For example, when an application performs a direc-
tory listing, the return results don’t include entries identifying the files associ-
ated with the rootkit.

■■ Kernel mode: Can intercept calls to native APIs in kernel mode.4 The rootkit
can also hide the presence of a malware process by removing it from the ker-
nel’s list of active processes.

■■ Virtual machine based: This type of rootkit installs a lightweight virtual
machine monitor and then runs the operating system in a virtual machine
above it. The rootkit can then transparently intercept and modify states and
events occurring in the virtualized system.

■■ External mode: The malware is located outside the normal operation mode
of the targeted system, in BIOS or system management mode, where it can
directly access hardware.

This classification shows a continuing arms race between rootkit authors, who
exploit ever more stealthy mechanisms to hide their code, and those who develop
mechanisms to harden systems against such subversion or to detect when it has
occurred.

	 10.10 Countermeasures

Malware Countermeasure Approaches

SP 800-83 lists four main elements of prevention: policy, awareness, vulnerability mit-
igation, and threat mitigation. Having a suitable policy to address malware preven-
tion provides a basis for implementing appropriate preventative countermeasures.

4The kernel is the portion of the OS that includes the most heavily used and most critical portions of
software. Kernel mode is a privileged mode of execution reserved for the kernel. Typically, kernel mode
allows access to regions of main memory that are unavailable to processes executing in a less privileged
mode and also enables execution of certain machine instructions that are restricted to the kernel mode.

M10_STAL4855_06_GE_C10.indd 360 8/29/16 1:28 PM

10.10 / Countermeasures  361

One of the first countermeasures that should be employed is to ensure all
systems are as current as possible, with all patches applied, in order to reduce the
number of vulnerabilities that might be exploited on the system. The next is to set
appropriate access controls on the applications and data stored on the system, to
reduce the number of files that any user can access, and hence potentially infect or
corrupt, as a result of them executing some malware code. These measures directly
target the key propagation mechanisms used by worms, viruses, and some trojans.

The third common propagation mechanism, which targets users in a social
engineering attack, can be countered using appropriate user awareness and training.
This aims to equip users to be more aware of these attacks, and less likely to take
actions that result in their compromise. SP 800-83 provides examples of suitable
awareness issues.

If prevention fails, then technical mechanisms can be used to support the fol-
lowing threat mitigation options:

■■ Detection: Once the infection has occurred, determine that it has occurred and
locate the malware.

■■ Identification: Once detection has been achieved, identify the specific mal-
ware that has infected the system.

■■ Removal: Once the specific malware has been identified, remove all traces of
malware virus from all infected systems so that it cannot spread further.

If detection succeeds but either identification or removal is not possible, then
the alternative is to discard any infected or malicious files and reload a clean backup
version. In the case of some particularly nasty infections, this may require a com-
plete wipe of all storage, and rebuild of the infected system from known clean media.

To begin, let us consider some requirements for effective malware
countermeasures:

■■ Generality: The approach taken should be able to handle a wide variety of
attacks.

■■ Timeliness: The approach should respond quickly so as to limit the number of
infected programs or systems and the consequent activity.

■■ Resiliency: The approach should be resistant to evasion techniques employed
by attackers to hide the presence of their malware.

■■ Minimal denial-of-service costs: The approach should result in minimal reduc-
tion in capacity or service due to the actions of the countermeasure software,
and should not significantly disrupt normal operation.

■■ Transparency: The countermeasure software and devices should not require
modification to existing (legacy) OSs, application software, and hardware.

■■ Global and local coverage: The approach should be able to deal with attack
sources both from outside and inside the enterprise network.

Achieving all these requirements often requires the use of multiple approaches.
Detection of the presence of malware can occur in a number of locations. It

may occur on the infected system, where some host-based “antivirus” program is
running, monitoring data imported into the system, and the execution and behavior

M10_STAL4855_06_GE_C10.indd 361 8/29/16 1:28 PM

362   chapter 10 / Malicious Software

of programs running on the system. Or, it may take place as part of the perimeter
security mechanisms used in an organization’s firewall and intrusion detection systems
(IDSs). Lastly, detection may use distributed mechanisms that gather data from both
host-based and perimeter sensors, potentially over a large number of networks and
organizations, in order to obtain the largest scale view of the movement of malware.

Host-Based Scanners

The first location where antivirus software is used is on each end system. This gives
the software the maximum access to information not only on the behavior of the
malware as it interacts with the targeted system but also on the smallest overall
view of malware activity. The use of antivirus software on personal computers is
now widespread, in part caused by the explosive growth in malware volume and
activity. Advances in virus and other malware technology, and in antivirus tech-
nology and other countermeasures, go hand in hand. Early malware used rela-
tively simple and easily detected code, and hence could be identified and purged
with relatively simple antivirus software packages. As the malware arms race has
evolved, both the malware code and, necessarily, antivirus software have grown
more complex and sophisticated.

[STEP93] identifies four generations of antivirus software:

■■ First generation: Simple scanners

■■ Second generation: Heuristic scanners

■■ Third generation: Activity traps

■■ Fourth generation: Full-featured protection

A first-generation scanner requires a malware signature to identify the mal-
ware. The signature may contain “wildcards” but matches essentially the same
structure and bit pattern in all copies of the malware. Such signature-specific scan-
ners are limited to the detection of known malware. Another type of first-genera-
tion scanner maintains a record of the length of programs and looks for changes in
length as a result of virus infection.

A second-generation scanner does not rely on a specific signature. Rather, the
scanner uses heuristic rules to search for probable malware instances. One class of
such scanners looks for fragments of code that are often associated with malware.
For example, a scanner may look for the beginning of an encryption loop used in a
polymorphic virus and discover the encryption key. Once the key is discovered, the
scanner can decrypt the malware to identify it, and then remove the infection and
return the program to service.

Another second-generation approach is integrity checking. A checksum
can be appended to each program. If malware alters or replaces some program
without changing the checksum, then an integrity check will catch this change.
To counter malware that is sophisticated enough to change the checksum when
it alters a program, an encrypted hash function can be used. The encryption key
is stored separately from the program so that the malware cannot generate a new
hash code and encrypt that. By using a hash function rather than a simpler check-
sum, the malware is prevented from adjusting the program to produce the same
hash code as before. If a protected list of programs in trusted locations is kept, this

M10_STAL4855_06_GE_C10.indd 362 8/29/16 1:28 PM

10.10 / Countermeasures  363

approach can also detect attempts to replace or install rogue code or programs in
these locations.

Third-generation programs are memory-resident programs that identify mal-
ware by its actions rather than its structure in an infected program. Such programs
the advantage that it is not necessary to develop signatures and heuristics for a wide
array of malware. Rather, it is necessary only to identify the small set of actions that
indicate that malicious activity is being attempted and then to intervene.

Fourth-generation products are packages consisting of a variety of antivirus
techniques used in conjunction. These include scanning and activity trap compo-
nents. In addition, such a package includes access control capability, which limits
the ability of malware to penetrate a system and then limits the ability of a malware
to update files in order to propagate.

The arms race continues. With fourth-generation packages, a more compre-
hensive defense strategy is employed, broadening the scope of defense to more
general-purpose computer security measures. These include more sophisticated
antivirus approaches. We now highlight two of the most important.

Host-Based Behavior-Blocking Software  Unlike heuristics or fingerprint-based
scanners, behavior-blocking software integrates with the operating system of a
host computer and monitors program behavior in real time for malicious actions
[CONR02, NACH02]. The behavior blocking software then blocks potentially mali-
cious actions before they have a chance to affect the system. Monitored behaviors
can include the following:

■■ Attempts to open, view, delete, and/or modify files

■■ Attempts to format disk drives and other unrecoverable disk operations

■■ Modifications to the logic of executable files or macros

■■ Modification of critical system settings, such as start-up settings

■■ Scripting of e-mail and instant messaging clients to send executable content

■■ Initiation of network communications

Because a behavior blocker can block suspicious software in real time, it has
an advantage over such established antivirus detection techniques as fingerprinting
or heuristics. There are literally trillions of different ways to obfuscate and rear-
range the instructions of a virus or worm, many of which will evade detection by a
fingerprint scanner or heuristic. But eventually, malicious code must make a well-
defined request to the operating system. Given that the behavior blocker can inter-
cept all such requests, it can identify and block malicious actions regardless of how
obfuscated the program logic appears to be.

Behavior blocking alone has limitations. Because the malicious code must
run on the target machine before all its behaviors can be identified, it can cause
harm before it has been detected and blocked. For example, a new item of malware
might shuffle a number of seemingly unimportant files around the hard drive before
modifying a single file and being blocked. Even though the actual modification was
blocked, the user may be unable to locate his or her files, causing a loss to produc-
tivity or possibly having worse consequences.

M10_STAL4855_06_GE_C10.indd 363 8/29/16 1:28 PM

364   chapter 10 / Malicious Software

Spyware Detection and Removal  Although general antivirus products include
signatures to detect spyware, the threat this type of malware poses, and its use of
stealthing techniques, means that a range of spyware specific detection and removal
utilities exist. These specialize in the detection and removal of spyware, and provide
more robust capabilities. Thus they complement, and should be used along with,
more general antivirus products.

Rootkit Countermeasures  Rootkits can be extraordinarily difficult to detect and
neutralize, particularly so for kernel-level rootkits. Many of the administrative tools
that could be used to detect a rootkit or its traces can be compromised by the root-
kit precisely so that it is undetectable.

Countering rootkits requires a variety of network- and computer-level secu-
rity tools. Both network- and host-based IDSs can look for the code signatures of
known rootkit attacks in incoming traffic. Host-based antivirus software can also be
used to recognize the known signatures.

Of course, there are always new rootkits and modified versions of existing
rootkits that display novel signatures. For these cases, a system needs to look for
behaviors that could indicate the presence of a rootkit, such as the interception of
system calls or a keylogger interacting with a keyboard driver. Such behavior detec-
tion is far from straightforward. For example, antivirus software typically intercepts
system calls.

Another approach is to do some sort of file integrity check. An example of
this is RootkitRevealer, a freeware package from SysInternals. The package com-
pares the results of a system scan using APIs with the actual view of storage using
instructions that do not go through an API. Because a rootkit conceals itself by
modifying the view of storage seen by administrator calls, RootkitRevealer catches
the discrepancy.

If a kernel-level rootkit is detected, the only secure and reliable way to recover
is to do an entire new OS install on the infected machine.

Perimeter Scanning Approaches

The next location where antivirus software is used is on an organization’s firewall
and IDS. It is typically included in e-mail and Web proxy services running on these
systems. It may also be included in the traffic analysis component of an IDS. This
gives the antivirus software access to malware in transit over a network connection
to any of the organization’s systems, providing a larger-scale view of malware activ-
ity. This software may also include intrusion prevention measures, blocking the flow
of any suspicious traffic, thus preventing it reaching and compromising some target
system, either inside or outside the organization.

However, this approach is limited to scanning the malware content, as it does
not have access to any behavior observed when it runs on an infected system. Two
types of monitoring software may be used:

■■ Ingress monitors: These are located at the border between the enterprise net-
work and the Internet. They can be part of the ingress-filtering software of a
border router or external firewall or a separate passive monitor. A honeypot

M10_STAL4855_06_GE_C10.indd 364 8/29/16 1:28 PM

10.10 / Countermeasures  365

can also capture incoming malware traffic. An example of a detection tech-
nique for an ingress monitor is to look for incoming traffic to unused local IP
addresses.

■■ Egress monitors: These can be located at the egress point of individual LANs
on the enterprise network as well as at the border between the enterprise net-
work and the Internet. In the former case, the egress monitor can be part of the
egress-filtering software of a LAN router or switch. As with ingress monitors,
the external firewall or a honeypot can house the monitoring software. Indeed,
the two types of monitors can be collocated. The egress monitor is designed to
catch the source of a malware attack by monitoring outgoing traffic for signs of
scanning or other suspicious behavior.

Perimeter monitoring can also assist in detecting and responding to botnet
activity by detecting abnormal traffic patterns associated with this activity. Once
bots are activated and an attack is underway, such monitoring can be used to detect
the attack. However, the primary objective is to try to detect and disable the botnet
during its construction phase, using the various scanning techniques we have just
discussed, identifying and blocking the malware that is used to propagate this type
of payload.

Perimeter Worm Countermeasures  There is considerable overlap in techniques
for dealing with viruses and worms. Once a worm is resident on a machine, antivirus
software can be used to detect it, and possibly remove it. In addition, because worm
propagation generates considerable network activity, perimeter network activity
and usage monitoring can form the basis of a worm defense. Following [JHI07], we
list six classes of worm defense that address the network activity it may generate:

A.	Signature-based worm scan filtering: This type of approach generates a worm
signature, which is then used to prevent worm scans from entering/leaving a
network/host. Typically, this approach involves identifying suspicious flows and
generating a worm signature. This approach is vulnerable to the use of poly-
morphic worms: Either the detection software misses the worm or, if it is suf-
ficiently sophisticated to deal with polymorphic worms, the scheme may take a
long time to react. [NEWS05] is an example of this approach.

B.	 Filter-based worm containment: This approach is similar to class A but focuses
on worm content rather than a scan signature. The filter checks a message
to determine if it contains worm code. An example is Vigilante [COST05],
which relies on collaborative worm detection at end hosts. This approach can
be quite effective but requires efficient detection algorithms and rapid alert
dissemination.

C.	 Payload-classification-based worm containment: These network-based tech-
niques examine packets to see if they contain a worm. Various anomaly detec-
tion techniques can be used, but care is needed to avoid high levels of false
positives or negatives. An example of this approach, which looks for exploit
code in network flows, is reported in [CHIN05]. This approach does not gener-
ate signatures based on byte patterns but rather looks for control and data flow
structures that suggest an exploit.

M10_STAL4855_06_GE_C10.indd 365 8/29/16 1:28 PM

366   chapter 10 / Malicious Software

D.	 Threshold random walk (TRW) scan detection: TRW exploits randomness
in picking destinations to connect to as a way of detecting if a scanner is in
operation [JUNG04]. TRW is suitable for deployment in high-speed, low-
cost network devices. It is effective against the common behavior seen in
worm scans.

E.	 Rate limiting: This class limits the rate of scanlike traffic from an infected
host. Various strategies can be used, including limiting the number of new
machines a host can connect to in a window of time, detecting a high con-
nection failure rate, and limiting the number of unique IP addresses a host
can scan in a window of time. [CHEN04] is an example. This class of counter-
measures may introduce longer delays for normal traffic. This class is also not
suited for slow, stealthy worms that spread slowly to avoid detection based on
activity level.

F.	 Rate halting: This approach immediately blocks outgoing traffic when a thresh-
old is exceeded either in outgoing connection rate or in diversity of connection
attempts [JHI07]. The approach must include measures to quickly unblock
mistakenly blocked hosts in a transparent way. Rate halting can integrate with
a signature- or filter-based approach so that once a signature or filter is gener-
ated, every blocked host can be unblocked. Rate halting appears to offer a very
effective countermeasure. As with rate limiting, rate-halting techniques are not
suitable for slow, stealthy worms.

Distributed Intelligence Gathering Approaches

The final location where antivirus software is used is in a distributed configu-
ration. It gathers data from a large number of both host-based and perimeter
sensors, relays this intelligence to a central analysis system able to correlate and
analyze the data, which can then return updated signatures and behavior pat-
terns to enable all of the coordinated systems to respond and defend against mal-
ware attacks. A number of such systems have been proposed. We discuss one such
approach in the remainder of this section.

Figure 10.4 shows an example of a distributed worm countermeasure architec-
ture (based on [SIDI05]). The system works as follows (numbers in figure refer to
numbers in the following list):

1.	 Sensors deployed at various network locations detect a potential worm. The
sensor logic can also be incorporated in IDS sensors.

2.	 The sensors send alerts to a central server, which correlates and analyzes the
incoming alerts. The correlation server determines the likelihood that a worm
attack is being observed and the key characteristics of the attack.

3.	 The server forwards its information to a protected environment, where the
potential worm may be sandboxed for analysis and testing.

4.	 The protected system tests the suspicious software against an appropriately
instrumented version of the targeted application to identify the vulnerability.

M10_STAL4855_06_GE_C10.indd 366 8/29/16 1:28 PM

10.11 / Distributed Denial of Service Attacks  367

5.	 The protected system generates one or more software patches and tests these.

6.	 If the patch is not susceptible to the infection and does not compromise the
application’s functionality, the system sends the patch to the application host
to update the targeted application.

	 10.11 Distributed Denial of Service Attacks

A denial-of-service (DoS) attack is an attempt to prevent legitimate users of a ser-
vice from using that service. When this attack comes from a single host or network
node, then it is simply referred to as a DoS attack. A more serious threat is posed
by a DDoS attack. DDoS attacks make computer systems inaccessible by flooding
servers, networks, or even end-user systems with useless traffic so that legitimate
users can no longer gain access to those resources. In a typical DDoS attack, a large
number of compromised hosts are amassed to send useless packets.

This section is concerned with DDoS attacks. First, we look at the nature and
types of attacks. Next, we examine methods by which an attacker is able to recruit
a network of hosts for attack launch. Finally, this section looks at countermeasures.

Figure 10.4  Placement of Worm Monitors

Internet

Remote sensor
Honeypot

Passive
sensor

Firewall
sensor

Correlation
server

Application
server

Instrumented applications

Sandboxed
environment

Enterprise network

Hypothesis testing
and analysis

Patch
generation

5. Possible �x generation

3. Forward
features

6. Application update

4. Vulnerability
testing and
identi�cation

1. Worm scans or
infection attempts

2. Noti�cations

M10_STAL4855_06_GE_C10.indd 367 8/29/16 1:28 PM

368   chapter 10 / Malicious Software

DDoS Attack Description

A DDoS attack attempts to consume the target’s resources so that it cannot provide
service. One way to classify DDoS attacks is in terms of the type of resource that
is consumed. Broadly speaking, the resource consumed is either an internal host
resource on the target system or data transmission capacity in the local network to
which the target is attacked.

A simple example of an internal resource attack is the SYN flood attack.
Figure 10.5a shows the steps involved:

1.	 The attacker takes control of multiple hosts over the Internet, instructing them
to contact the target Web server.

2.	 The slave hosts begin sending TCP/IP SYN (synchronize/initialization) pack-
ets, with erroneous return IP address information, to the target.

3.	 Each SYN packet is a request to open a TCP connection. For each such packet,
the Web server responds with a SYN/ACK (synchronize/acknowledge) packet,
trying to establish a TCP connection with a TCP entity at a spurious IP address.
The Web server maintains a data structure for each SYN request waiting for a
response back and becomes bogged down as more traffic floods in. The result
is that legitimate connections are denied while the victim machine is waiting to
complete bogus “half-open” connections.

The TCP state data structure is a popular internal resource target but by no
means the only one. [CERT01] gives the following examples:

1.	 An intruder may attempt to use up available data structures that are used by
the OS to manage processes, such as process table entries and process control
information entries. The attack can be quite simple, such as a program that
forks new processes repeatedly.

2.	 An intruder may attempt to allocate to itself large amounts of disk space by a
variety of straightforward means. These include generating numerous e-mails,
forcing errors that trigger audit trails, and placing files in shareable areas.

Figure 10.5b illustrates an example of an attack that consumes data transmis-
sion resources. The following steps are involved:

1.	 The attacker takes control of multiple hosts over the Internet, instructing them
to send ICMP ECHO packets5 with the target’s spoofed IP address to a group
of hosts that act as reflectors, as described subsequently.

2.	 Nodes at the bounce site receive multiple spoofed requests and respond by
sending echo reply packets to the target site.

3.	 The target’s router is flooded with packets from the bounce site, leaving no
data transmission capacity for legitimate traffic.

5The Internet Control Message Protocol (ICMP) is an IP-level protocol for the exchange of control pack-
ets between a router and a host or between hosts. The ECHO packet requires the recipient to respond
with an echo reply to check that communication is possible between entities.

M10_STAL4855_06_GE_C10.indd 368 8/29/16 1:28 PM

10.11 / Distributed Denial of Service Attacks  369

Another way to classify DDoS attacks is as either direct or reflector DDoS
attacks. In a direct DDoS attack (Figure 10.6a), the attacker is able to implant zombie
software on a number of sites distributed throughout the Internet. Often, the DDoS
attack involves two levels of zombie machines: master zombies and slave zombies.
The hosts of both machines have been infected with malicious code. The attacker
coordinates and triggers the master zombies, which in turn coordinate and trigger
the slave zombies. The use of two levels of zombies makes it more difficult to trace
the attack back to its source and provides for a more resilient network of attackers.

A reflector DDoS attack adds another layer of machines (Figure 10.6b). In this
type of attack, the slave zombies construct packets requiring a response that contain
the target’s IP address as the source IP address in the packet’s IP header. These pack-
ets are sent to uninfected machines known as reflectors. The uninfected machines
respond with packets directed at the target machine. A reflector DDoS attack can
easily involve more machines and more traffic than a direct DDoS attack and hence
be more damaging. Further, tracing back the attack or filtering out the attack packets
is more difficult because the attack comes from widely dispersed uninfected machines.

Figure 10.5  Examples of Simple DDoS Attacks

SYN
packets

Attack
machine

Attack
machine

Re�ector
machines

Slave
servers

1

1

2

2

3

3

(a) Distributed SYN �ood attack

(b) Distributed ICMP attack

Internet

Target Web
server

Target
router

SYN
packets

SYN/ACK
packets

M10_STAL4855_06_GE_C10.indd 369 8/29/16 1:28 PM

370   chapter 10 / Malicious Software

Constructing the Attack Network

The first step in a DDoS attack is for the attacker to infect a number of machines
with zombie software that will ultimately be used to carry out the attack. The essen-
tial ingredients in this phase of the attack are the following:

1.	 Software that can carry out the DDoS attack. The software must be able to
run on a large number of machines, must be able to conceal its existence, must

Figure 10.6  Types of Flooding-Based DDoS Attacks

(a) Direct DDoS Attack

Attacker

Attacker

Re�ectors

Victim

Victim

Master
zombies

Master
zombies

Slave
zombies

Slave
zombies

(b) Re�ector DDoS Attack

M10_STAL4855_06_GE_C10.indd 370 8/29/16 1:28 PM

10.11 / Distributed Denial of Service Attacks  371

be able to communicate with the attacker or have some sort of time-triggered
mechanism, and must be able to launch the intended attack toward the target.

2.	 A vulnerability in a large number of systems. The attacker must become aware
of a vulnerability that many system administrators and individual users have
failed to patch and that enables the attacker to install the zombie software.

3.	 A strategy for locating vulnerable machines, a process known as scanning.

In the scanning process, the attacker first seeks out a number of vulnerable
machines and infects them. Then, typically, the zombie software that is installed in
the infected machines repeats the same scanning process, until a large distributed
network of infected machines is created. [MIRK04] lists the following types of scan-
ning strategies:

■■ Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of Internet
traffic, which may cause generalized disruption even before the actual attack
is launched.

■■ Hit list: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that an
attack is underway. Once the list is compiled, the attacker begins infecting ma-
chines on the list. Each infected machine is provided with a portion of the list
to scan. This strategy results in a very short scanning period, which may make
it difficult to detect that infection is taking place.

■■ Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

■■ Local subnet: If a host is infected behind a firewall, that host then looks for
targets in its own local network. The host uses the subnet address structure to
find other hosts that would otherwise be protected by the firewall.

DDoS Countermeasures

In general, there are three lines of defense against DDoS attacks [CHAN02]:

■■ Attack prevention and preemption (before the attack): These mechanisms en-
able the victim to endure attack attempts without denying service to legiti-
mate clients. Techniques include enforcing policies for resource consumption
and providing backup resources available on demand. In addition, prevention
mechanisms modify systems and protocols on the Internet to reduce the pos-
sibility of DDoS attacks.

■■ Attack detection and filtering (during the attack): These mechanisms attempt to
detect the attack as it begins and respond immediately. This minimizes the impact
of the attack on the target. Detection involves looking for suspicious patterns of
behavior. Response involves filtering out packets likely to be part of the attack.

■■ Attack source traceback and identification (during and after the attack): This
is an attempt to identify the source of the attack as a first step in preventing
future attacks. However, this method typically does not yield results fast
enough, if at all, to mitigate an ongoing attack.

M10_STAL4855_06_GE_C10.indd 371 8/29/16 1:28 PM

372   chapter 10 / Malicious Software

The challenge in coping with DDoS attacks is the sheer number of ways in
which they can operate. Thus, DDoS countermeasures must evolve with the threat.

	 10.12 Key Terms, Review Questions, and Problems

Key Terms

adware
attack kit
backdoor
behavior-blocking software
blended attack
boot sector infector
bot
botnet
crimeware
direct DDoS attack
distributed denial of service

(DDoS)
downloader
drive-by-download

e-mail virus
flooders
keyloggers
logic bomb
macro virus
malicious software
malware
metamorphic virus
mobile code
parasitic virus
phishing
polymorphic virus
ransomware

reflector DDoS attack
rootkit
scanning
spear-phishing
spyware
stealth virus
trapdoor
Trojan horse
virus
worm
zombie
zero-day exploit

Review Questions

	 10.1	 What are three broad mechanisms that malware can use to propagate?
	 10.2	 What is a blended attack?
	 10.3	 What are typical phases of operation of a virus or worm?
	 10.4	 Classify viruses based on the targets they try to infect.
	 10.5	 List the features of macro viruses that enable them to infect scripting codes.
	 10.6	 What functions does a worm perform during the propagation phase?
	 10.7	 Give some examples of client side vulnerabilities that can be exploited by malware?
	 10.8	 What is an “infection vector”?
	 10.9	 Explain the difference between a keylogger and spyware with an example.
	 10.10	 What kind of activities can be performed by an attacker using a rootkit? What makes

it difficult to detect a rootkit?
	 10.11	 Describe some malware countermeasure elements.
	 10.12	 List three places malware mitigation mechanisms may be located.
	 10.13	 Briefly describe the four generations of antivirus software.
	 10.14	 List the activities that can be monitored by “behavior-blocking software”.
	 10.15	 What is the difference between a reflector DDoS attack and a direct DDoS attack?

Problems

	 10.1	 There is a flaw in the virus program of Figure 10.1a. What is it?
	 10.2	 The question arises as to whether it is possible to develop a program that can analyze

a piece of software to determine if it is a virus. Consider that we have a program D

M10_STAL4855_06_GE_C10.indd 372 8/29/16 1:28 PM

10.12 / Key Terms, Review Questions, and Problems  373

that is supposed to be able to do that. That is, for any program P, if we run D(P), the
result returned is TRUE (P is a virus) or FALSE (P is not a virus). Now consider the
following program:

Program CV :=
{ . . .
main-program :=

{if D(CV) then goto next:
else infect-executable;

}
next:
}

In the preceding program, infect-executable is a module that scans memory for
executable programs and replicates itself in those programs. Determine if D can
correctly decide whether CV is a virus.

	 10.3	 The following code fragments show a sequence of virus instructions and a metamor-
phic version of the virus. Describe the effect produced by the metamorphic code.

Original Code Metamorphic Code

mov  eax,  5 mov  eax,  5

add  eax,  ebx push  edx

call  [ebx] jmp  0x89AB

swap  eax,  ebx

call  [ebx]

nop

	 10.4	 The list of passwords used by the Morris worm is provided at this book’s Premium
Content Web site.
a.	 The assumption has been expressed by many people that this list represents words

commonly used as passwords. Does this seem likely? Justify your answer.
b.	 If the list does not reflect commonly used passwords, suggest some approaches

that Morris may have used to construct the list.
	 10.5	 What type of malware is the following code fragment?

legitimate code
if data is Friday the 13th;

crash_computer();
legitimate code

	 10.6	 Consider the following situation and identify the type of software attack, if any:

You are the owner of a small business. After you login to your client server appli-
cation with your credentials, you find that the data is displayed in the form of a
jumbled collection of alphabets, numbers, special characters, and symbols. You
are unpleasantly surprised and wonder what happened. You get a call after some
time, and the person at the other end tells you that your system is hacked, and you
can recover the data once you pay him a certain amount of money.

	 10.7	 Assume that you have received an e-mail with an attachment from your friend’s
e-mail id. You access the e-mail using your work computer, and click on the

M10_STAL4855_06_GE_C10.indd 373 8/29/16 1:28 PM

374   chapter 10 / Malicious Software

attachment without screening it for malware. What threats might this pose to your
work computer?

	 10.8	 Suppose you observe that your home PC is responding very slowly to information re-
quests from the net. And then you further observe that your network gateway shows
high levels of network activity, even though you have closed your e-mail client, Web
browser, and other programs that access the net. What types of malware could cause
these symptoms? Discuss how the malware might have gained access to your system.
What steps can you take to check whether this has occurred? If you do identify mal-
ware on your PC, how can you restore it to safe operation?

	 10.9	 Suppose while browsing the Internet, you get a popup window stating that you need
to install this software in order to clean your system as it is running low on resources.
Since the message seems to be from a genuine OS vendor like Microsoft Windows or
Mac iOS, you click the ‘OK’ button. How could your action harm your system? How
can you fix the issue?

	 10.10	 Suppose you have a new smartphone and are excited about the range of apps avail-
able for it. You read about a really interesting new game that is available for your
phone. You do a quick Web search for it and see that a version is available from one
of the free marketplaces. When you download and start to install this app, you are
asked to approve the access permissions granted to it. You see that it wants permis-
sion to “Send SMS messages” and to “Access your address-book.” Should you be
suspicious that a game wants these types of permissions? What threat might the app
pose to your smartphone? Should you grant these permissions and proceed to install
it? What types of malware might it be?

	 10.11	 Assume you receive an e-mail that appears to come from a senior manager of your
company, with a subject indicating that it concerns a project that you are currently
working on. When you view the e-mail, you see that it asks you to review the attached
revised press release, supplied as a PDF document, to check that all details are correct
before management releases it. When you attempt to open the PDF, the viewer pops
up a dialog labeled “Launch File,” indicating that “the file and its viewer application
are set to be launched by this PDF file.” In the section of this dialog labeled “File”
there are a number of blank lines and finally the text “Click the ‘Open’ button to view
this document.” You also note that there is a vertical scroll-bar visible for this region.
What type of threat might this pose to your computer system should you indeed
select the “Open” button? How could you check your suspicions without threatening
your system? What type of attack is this type of message associated with? How many
people are likely to have received this particular e-mail?

	 10.12	 Assume you work in a financial auditing company. An e-mail arrives in your inbox
that appears to be from your chief auditor with the following content:

“We have identified a few threats which pose potential danger to our informa-
tion systems. In order to address this, our information security team has decided
to ensure proper credentials of all the employees. Please cooperate and complete
this process immediately by clicking the given link.”

What kind of an attack is this e-mail attempting? How should you respond to such
e-mails?

	 10.13	 There are hundreds of unsolicited e-mails in your inbox. What kind of attack is this?
Analyze related issues.

	 10.14	 Suggest some methods of attacking the worm countermeasure architecture, discussed
in Section 10.9, that could be used by worm creators. Suggest some possible counter-
measures to these methods.

M10_STAL4855_06_GE_C10.indd 374 8/29/16 1:28 PM

375

11.1	 Intruders

Intruder Behavior Patterns
Intrusion Techniques

11.2	 Intrusion Detection

Audit Records
Statistical Anomaly Detection
Rule-Based Intrusion Detection
The Base-Rate Fallacy
Distributed Intrusion Detection
Honeypots
Intrusion Detection Exchange Format

11.3	 Password Management

The Vulnerability of Passwords
The Use of Hashed Passwords
User Password Choices
Password Selection Strategies
Bloom Filter

11.4	 Key Terms, Review Questions, and Problems

Chapter

Intruders

M11_STAL4855_06_GE_C11.indd 375 9/8/16 8:47 PM

376   chapter 11 / Intruders

A significant security problem for networked systems is hostile, or at least unwanted,
trespass by users or software. User trespass can take the form of unauthorized logon
to a machine or, in the case of an authorized user, acquisition of privileges or perfor-
mance of actions beyond those that have been authorized. Software trespass can take
the form of a virus, worm, or Trojan horse.

All these attacks relate to network security because system entry can be achieved
by means of a network. However, these attacks are not confined to network-based
attacks. A user with access to a local terminal may attempt trespass without using an
intermediate network. A virus or Trojan horse may be introduced into a system by
means of an optical disc. Only the worm is a uniquely network phenomenon. Thus,
system trespass is an area in which the concerns of network security and computer
security overlap.

Because the focus of this book is network security, we do not attempt a compre-
hensive analysis of either the attacks or the security countermeasures related to system
trespass. Instead, in this Part we present a broad overview of these concerns.

This chapter covers the subject of intruders. First, we examine the nature of the
attack and then look at strategies intended for prevention and, failing that, detection.
Next we examine the related topic of password management.

	 11.1	Intruders

One of the two most publicized threats to security is the intruder (the other is viruses),
often referred to as a hacker or cracker. In an important early study of intrusion,
Anderson [ANDE80] identified three classes of intruders:

■■ Masquerader: An individual who is not authorized to use the computer and
who penetrates a system’s access controls to exploit a legitimate user’s account

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Distinguish among various types of intruder behavior patterns.

◆◆ Understand the basic principles of and requirements for intrusion detection.

◆◆ Discuss the key features of intrusion detection systems.

◆◆ Define the intrusion detection exchange format.

◆◆ Explain the purpose of honeypots.

◆◆ Explain the mechanism by which hashed passwords are used for user
authentication.

◆◆ Understand the use of the Bloom filter in password management.

M11_STAL4855_06_GE_C11.indd 376 9/8/16 8:47 PM

11.1 / Intruders  377

■■ Misfeasor: A legitimate user who accesses data, programs, or resources for
which such access is not authorized, or who is authorized for such access but
misuses his or her privileges

■■ Clandestine user: An individual who seizes supervisory control of the system
and uses this control to evade auditing and access controls or to suppress audit
collection

The masquerader is likely to be an outsider, the misfeasor generally is an insider,
and the clandestine user can be either an outsider or an insider.

Intruder attacks range from the benign to the serious. At the benign end of the
scale, there are many people who simply wish to explore internets and see what is
out there. At the serious end are individuals who are attempting to read privileged
data, perform unauthorized modifications to data, or disrupt the system.

[GRAN04] lists the following examples of intrusion:

■■ Performing a remote root compromise of an e-mail server

■■ Defacing a Web server

■■ Guessing and cracking passwords

■■ Copying a database containing credit card numbers

■■ Viewing sensitive data, including payroll records and medical information,
without authorization

■■ Running a packet sniffer on a workstation to capture usernames and passwords

■■ Using a permission error on an anonymous FTP server to distribute pirated
software and music files

■■ Dialing into an unsecured modem and gaining internal network access

■■ Posing as an executive, calling the help desk, resetting the executive’s e-mail
password, and learning the new password

■■ Using an unattended, logged-in workstation without permission

Intruder Behavior Patterns

The techniques and behavior patterns of intruders are constantly shifting, to exploit
newly discovered weaknesses and to evade detection and countermeasures. Even
so, intruders typically follow one of a number of recognizable behavior patterns,
and these patterns typically differ from those of ordinary users. In the following, we
look at three broad examples of intruder behavior patterns, to give the reader some
feel for the challenge facing the security administrator.

Hackers  Traditionally, those who hack into computers do so for the thrill of it or
for status. The hacking community is a strong meritocracy in which status is deter-
mined by level of competence. Thus, attackers often look for targets of opportunity
and then share the information with others. A typical example is a break-in at a large
financial institution reported in [RADC04]. The intruder took advantage of the fact
that the corporate network was running unprotected services, some of which were
not even needed. In this case, the key to the break-in was the pcAnywhere appli-
cation. The manufacturer, Symantec, advertises this program as a remote control

M11_STAL4855_06_GE_C11.indd 377 9/8/16 8:47 PM

378   chapter 11 / Intruders

solution that enables secure connection to remote devices. But the attacker had an
easy time gaining access to pcAnywhere; the administrator used the same three-
letter username and password for the program. In this case, there was no intrusion
detection system on the 700-node corporate network. The intruder was only discov-
ered when a vice-president walked into her office and saw the cursor moving files
around on her Windows workstation.

Benign intruders might be tolerable, although they do consume resources and
may slow performance for legitimate users. However, there is no way in advance to
know whether an intruder will be benign or malign. Consequently, even for systems
with no particularly sensitive resources, there is a motivation to control this problem.

Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs)
are designed to counter this type of hacker threat. In addition to using such systems,
organizations can consider restricting remote logons to specific IP addresses and/or
use virtual private network technology.

One of the results of the growing awareness of the intruder problem has been
the establishment of a number of computer emergency response teams (CERTs).
These cooperative ventures collect information about system vulnerabilities and
disseminate it to systems managers. Hackers also routinely read CERT reports.
Thus, it is important for system administrators to quickly insert all software patches
to discovered vulnerabilities. Unfortunately, given the complexity of many IT
systems, and the rate at which patches are released, this is increasingly difficult
to achieve without automated updating. Even then, there are problems caused by
incompatibilities resulting from the updated software. Hence the need for multiple
layers of defense in managing security threats to IT systems.

Criminals  Organized groups of hackers have become a widespread and common
threat to Internet-based systems. These groups can be in the employ of a corpora-
tion or government but often are loosely affiliated gangs of hackers. Typically, these
gangs are young, often Eastern European, Russian, or southeast Asian hackers who
do business on the Web [ANTE06]. They meet in underground forums with names
like DarkMarket.org and theftservices.com to trade tips and data and coordinate
attacks. A common target is a credit card file at an e-commerce server. Attackers
attempt to gain root access. The card numbers are used by organized crime gangs
to purchase expensive items and are then posted to carder sites, where others can
access and use the account numbers; this obscures usage patterns and complicates
investigation.

Whereas traditional hackers look for targets of opportunity, criminal hack-
ers usually have specific targets, or at least classes of targets in mind. Once a site is
penetrated, the attacker acts quickly, scooping up as much valuable information as
possible and exiting.

IDSs and IPSs can also be used for these types of attackers, but may be less
effective because of the quick in-and-out nature of the attack. For e-commerce
sites, database encryption should be used for sensitive customer information, espe-
cially credit cards. For hosted e-commerce sites (provided by an outsider service),
the e-commerce organization should make use of a dedicated server (not used to
support multiple customers) and closely monitor the provider’s security services.

M11_STAL4855_06_GE_C11.indd 378 9/8/16 8:47 PM

http://DarkMarket.org
http://theftservices.com

11.1 / Intruders  379

Insider Attacks  Insider attacks are among the most difficult to detect and prevent.
Employees already have access and knowledge about the structure and content of
corporate databases. Insider attacks can be motivated by revenge or simply a feel-
ing of entitlement. An example of the former is the case of Kenneth Patterson, fired
from his position as data communications manager for American Eagle Outfitters.
Patterson disabled the company’s ability to process credit card purchases during five
days of the holiday season of 2002. As for a sense of entitlement, there have always
been many employees who felt entitled to take extra office supplies for home use, but
this now extends to corporate data. An example is that of a vice-president of sales for
a stock analysis firm who quit to go to a competitor. Before she left, she copied the
customer database to take with her. The offender reported feeling no animus toward
her former employee; she simply wanted the data because it would be useful to her.

Although IDS and IPS facilities can be useful in countering insider attacks,
other more direct approaches are of higher priority. Examples include the following:

■■ Enforce least privilege, only allowing access to the resources employees need
to do their job.

■■ Set logs to see what users access and what commands they are entering.

■■ Protect sensitive resources with strong authentication.

■■ Upon termination, delete employee’s computer and network access.

■■ Upon termination, make a mirror image of employee’s hard drive before reis-
suing it. That evidence might be needed if your company information turns up
at a competitor.

In this section, we look at the techniques used for intrusion. Then we examine
ways to detect intrusion.

Intrusion Techniques

The objective of the intruder is to gain access to a system or to increase the range of
privileges accessible on a system. Most initial attacks use system or software vulner-
abilities that allow a user to execute code that opens a backdoor into the system.
Alternatively, the intruder attempts to acquire information that should have been
protected. In some cases, this information is in the form of a user password. With
knowledge of some other user’s password, an intruder can log in to a system and
exercise all the privileges accorded to the legitimate user.

Typically, a system must maintain a file that associates a password with each autho-
rized user. If such a file is stored with no protection, then it is an easy matter to gain
access to it and learn passwords. The password file can be protected in one of two ways:

■■ One-way function: The system stores only the value of a function based on the
user’s password. When the user presents a password, the system transforms
that password and compares it with the stored value. In practice, the system
usually performs a one-way transformation (not reversible), in which the pass-
word is used to generate a key for the one-way function and in which a fixed-
length output is produced.

■■ Access control: Access to the password file is limited to one or a very few
accounts.

M11_STAL4855_06_GE_C11.indd 379 9/8/16 8:47 PM

380   chapter 11 / Intruders

If one or both of these countermeasures are in place, some effort is needed
for a potential intruder to learn passwords. On the basis of a survey of the literature
and interviews with a number of password crackers, [ALVA90] reports the follow-
ing techniques for learning passwords:

1.	 Try default passwords used with standard accounts that are shipped with the
system. Many administrators do not bother to change these defaults.

2.	 Exhaustively try all short passwords (those of one to three characters).

3.	 Try words in the system’s online dictionary or a list of likely passwords.
Examples of the latter are readily available on hacker bulletin boards.

4.	 Collect information about users, such as their full names, the names of their
spouse and children, pictures in their office, and books in their office that are
related to hobbies.

5.	 Try users’ phone numbers, Social Security numbers, and room numbers.

6.	 Try all legitimate license plate numbers for this state.

7.	 Use a Trojan horse (described in Chapter 10) to bypass restrictions on access.

8.	 Tap the line between a remote user and the host system.

The first six methods are various ways of guessing a password. If an intruder
has to verify the guess by attempting to log in, it is a tedious and easily countered
means of attack. For example, a system can simply reject any login after three pass-
word attempts, thus requiring the intruder to reconnect to the host to try again.
Under these circumstances, it is not practical to try more than a handful of pass-
words. However, the intruder is unlikely to try such crude methods. For example, if
an intruder can gain access with a low level of privileges to an encrypted password
file, then the strategy would be to capture that file and then use the encryption
mechanism of that particular system at leisure until a valid password that provided
greater privileges was discovered.

Guessing attacks are feasible, and indeed highly effective, when a large num-
ber of guesses can be attempted automatically and each guess verified, without the
guessing process being detectable. Later in this chapter, we have much to say about
thwarting guessing attacks.

The seventh method of attack listed earlier, the Trojan horse, can be par-
ticularly difficult to counter. An example of a program that bypasses access con-
trols has been cited in [ALVA90]. A low-privilege user produced a game program
and invited the system operator to use it in his or her spare time. The program did
indeed play a game, but in the background it also contained code to copy the pass-
word file, which was unencrypted but access protected, into the user’s file. Because
the game was running under the operator’s high-privilege mode, it was able to gain
access to the password file.

The eighth attack listed, line tapping, is a matter of physical security.
Other intrusion techniques do not require learning a password. Intruders can

get access to a system by exploiting attacks such as buffer overflows on a program
that runs with certain privileges. Privilege escalation can be done this way as well.

We turn now to a discussion of the two principal countermeasures: detection
and prevention. Detection is concerned with learning of an attack, either before or

M11_STAL4855_06_GE_C11.indd 380 9/8/16 8:47 PM

11.2 / Intrusion Detection  381

after its success. Prevention is a challenging security goal and an uphill battle at all
times. The difficulty stems from the fact that the defender must attempt to thwart
all possible attacks, whereas the attacker is free to try to find the weakest link in the
defense chain and attack at that point.

	 11.2	Intrusion Detection

Inevitably, the best intrusion prevention system will fail. A system’s second line
of defense is intrusion detection, and this has been the focus of much research in
recent years. This interest is motivated by a number of considerations, including the
following:

1.	 If an intrusion is detected quickly enough, the intruder can be identified and
ejected from the system before any damage is done or any data are compro-
mised. Even if the detection is not sufficiently timely to preempt the intruder,
the sooner that the intrusion is detected, the less the amount of damage and
the more quickly that recovery can be achieved.

2.	 An effective intrusion detection system can serve as a deterrent, so acting to
prevent intrusions.

3.	 Intrusion detection enables the collection of information about intrusion tech-
niques that can be used to strengthen the intrusion prevention facility.

Intrusion detection is based on the assumption that the behavior of the intruder
differs from that of a legitimate user in ways that can be quantified. Of course, we
cannot expect that there will be a crisp, exact distinction between an attack by an
intruder and the normal use of resources by an authorized user. Rather, we must
expect that there will be some overlap.

Figure 11.1 suggests, in very abstract terms, the nature of the task confront-
ing the designer of an intrusion detection system. Although the typical behavior
of an intruder differs from the typical behavior of an authorized user, there is an
overlap in these behaviors. Thus, a loose interpretation of intruder behavior, which
will catch more intruders, will also lead to a number of false positives, or autho-
rized users identified as intruders. On the other hand, an attempt to limit false posi-
tives by a tight interpretation of intruder behavior will lead to an increase in false
negatives, or intruders not identified as intruders. Thus, there is an element of com-
promise and art in the practice of intrusion detection.

In Anderson’s study [ANDE80], it was postulated that one could, with reason-
able confidence, distinguish between a masquerader and a legitimate user. Patterns
of legitimate user behavior can be established by observing past history, and signifi-
cant deviation from such patterns can be detected. Anderson suggests that the task
of detecting a misfeasor (legitimate user performing in an unauthorized fashion) is
more difficult, in that the distinction between abnormal and normal behavior may
be small. Anderson concluded that such violations would be undetectable solely
through the search for anomalous behavior. However, misfeasor behavior might
nevertheless be detectable by intelligent definition of the class of conditions that
suggest unauthorized use. Finally, the detection of the clandestine user was felt to

M11_STAL4855_06_GE_C11.indd 381 9/8/16 8:47 PM

382   chapter 11 / Intruders

be beyond the scope of purely automated techniques. These observations, which
were made in 1980, remain true today.

[PORR92] identifies the following approaches to intrusion detection:

1.	 Statistical anomaly detection:  Involves the collection of data relating to the
behavior of legitimate users over a period of time. Then statistical tests are
applied to observed behavior to determine with a high level of confidence
whether that behavior is not legitimate user behavior.

a.	 Threshold detection: This approach involves defining thresholds, indepen-
dent of user, for the frequency of occurrence of various events.

b.	 Profile based: A profile of the activity of each user is developed and used to
detect changes in the behavior of individual accounts.

2.	 Rule-based detection:  Involves an attempt to define a set of rules or attack
patterns that can be used to decide that a given behavior is that of an intruder.
This is often referred to as signature detection.

In essence, anomaly approaches attempt to define normal, or expected, behav-
ior, whereas signature-based approaches attempt to define proper behavior.

In terms of the types of attackers listed earlier, statistical anomaly detection is
effective against masqueraders, who are unlikely to mimic the behavior patterns of
the accounts they appropriate. On the other hand, such techniques may be unable

Figure 11.1  Profiles of Behavior of Intruders and Authorized Users

Overlap in observed
or expected behavior

Pro�le of
intruder behavior

Pro�le of
authorized user

behavior

Measurable behavior
parameter

Average behavior
of intruder

Average behavior
of authorized user

Probability
density function

M11_STAL4855_06_GE_C11.indd 382 9/8/16 8:47 PM

11.2 / Intrusion Detection  383

to deal with misfeasors. For such attacks, rule-based approaches may be able to rec-
ognize events and sequences that, in context, reveal penetration. In practice, a sys-
tem may exhibit a combination of both approaches to be effective against a broad
range of attacks.

Audit Records

A fundamental tool for intrusion detection is the audit record. Some record of ongo-
ing activity by users must be maintained as input to an intrusion detection system.
Basically, two plans are used:

■■ Native audit records: Virtually all multiuser operating systems include
accounting software that collects information on user activity. The advantage
of using this information is that no additional collection software is needed.
The disadvantage is that the native audit records may not contain the needed
information or may not contain it in a convenient form.

■■ Detection-specific audit records: A collection facility can be implemented
that generates audit records containing only that information required by the
intrusion detection system. One advantage of such an approach is that it could
be made vendor independent and ported to a variety of systems. The disadvan-
tage is the extra overhead involved in having, in effect, two accounting pack-
ages running on a machine.

A good example of detection-specific audit records is one developed by
Dorothy Denning [DENN87]. Each audit record contains the following fields:

■■ Subject: A subject initiates actions. A subject could be a user or a process act-
ing on behalf of users or groups of users. Subjects may be grouped into differ-
ent access classes, and these classes may overlap.

■■ Action: An action initiated by a subject refers to some object; for example,
login, read, perform I/O, execute.

■■ Object: Actions are performed on or with objects. Examples include files, pro-
grams, messages, records, terminals, printers, and user- or program-created struc-
tures. When a subject is the recipient of an action, such as electronic mail, then
that subject is considered an object. Objects may be grouped by type. Object
granularity may vary by object type and by environment. For example, database
actions may be audited for the database as a whole or at the record level.

■■ Exception-Condition: If an exception condition occurs, this field contains
identifying information.

■■ Resource-Usage: This is a list, in which each item gives the amount used of
some resource (e.g., number of lines printed or displayed, number of records
read or written, processor time, I/O units used, session elapsed time).

■■ Time-Stamp: The time stamp specifies the data and time of an action.

Most user operations are made up of a number of elementary actions. For
example, a file copy involves the execution of the user command, which includes
doing access validation and setting up the copy, plus the read from one file, plus the
write to another file. Consider the command

M11_STAL4855_06_GE_C11.indd 383 9/8/16 8:47 PM

384   chapter 11 / Intruders

COPY GAME.EXE TO <Libray>GAME.EXE

issued by Smith to copy an executable file GAME from the current directory to the
<Library> directory. The following audit records may be generated:

Smith execute <Library>COPY.EXE 0 CPU = 00002 11058721678

Smith read <Smith>GAME.EXE 0 RECORDS = 0 11058721679

Smith execute <Library>COPY.EXE write-viol RECORDS = 0 11058721680

In this case, the copy is aborted because Smith does not have write permission to
<Library>.

The decomposition of a user operation into elementary actions has three
advantages:

1.	 Because objects are the protectable entities in a system, the use of elementary
actions enables an audit of all behavior affecting an object. Thus, the system
can detect attempted subversions of access controls (by noting an abnormal-
ity in the number of exception conditions returned) and can detect successful
subversions by noting an abnormality in the set of objects accessible to the
subject.

2.	 Single-object, single-action audit records simplify the model and the
implementation.

3.	 Because of the simple, uniform structure of the detection-specific audit records,
it may be relatively easy to obtain this information or at least part of it by a
straightforward mapping from existing native audit records to the detection-
specific audit records.

Statistical Anomaly Detection

As was mentioned, statistical anomaly detection techniques fall into two broad
categories: threshold detection and profile-based systems. Threshold detection
involves counting the number of occurrences of a specific event type over an
interval of time. If the count surpasses what is considered a reasonable number that
one might expect to occur, then intrusion is assumed.

Threshold analysis, by itself, is a crude and ineffective detector of even
moderately sophisticated attacks. Both the threshold and the time interval must
be determined. Because of the variability across users, such thresholds are likely
to generate either a lot of false positives or a lot of false negatives. However,
simple threshold detectors may be useful in conjunction with more sophisticated
techniques.

Profile-based anomaly detection focuses on characterizing the past behavior of
individual users or related groups of users and then detecting significant deviations.
A profile may consist of a set of parameters, so that deviation on just a single
parameter may not be sufficient in itself to signal an alert.

M11_STAL4855_06_GE_C11.indd 384 9/8/16 8:47 PM

11.2 / Intrusion Detection  385

The foundation of this approach is an analysis of audit records. The audit
records provide input to the intrusion detection function in two ways. First, the
designer must decide on a number of quantitative metrics that can be used to mea-
sure user behavior. An analysis of audit records over a period of time can be used to
determine the activity profile of the average user. Thus, the audit records serve to
define typical behavior. Second, current audit records are the input used to detect
intrusion. That is, the intrusion detection model analyzes incoming audit records to
determine deviation from average behavior.

Examples of metrics that are useful for profile-based intrusion detection are
the following:

■■ Counter: A nonnegative integer that may be incremented but not decremented
until it is reset by management action. Typically, a count of certain event types
is kept over a particular period of time. Examples include the number of log-
ins by a single user during an hour, the number of times a given command is
executed during a single user session, and the number of password failures
during a minute.

■■ Gauge: A nonnegative integer that may be incremented or decremented.
Typically, a gauge is used to measure the current value of some entity. Examples
include the number of logical connections assigned to a user application and
the number of outgoing messages queued for a user process.

■■ Interval timer: The length of time between two related events. An example is
the length of time between successive logins to an account.

■■ Resource utilization: Quantity of resources consumed during a specified
period. Examples include the number of pages printed during a user session
and total time consumed by a program execution.

Given these general metrics, various tests can be performed to determine
whether current activity fits within acceptable limits. [DENN87] lists the following
approaches that may be taken:

■■ Mean and standard deviation

■■ Multivariate

■■ Markov process

■■ Time series

■■ Operational

The simplest statistical test is to measure the mean and standard deviation
of a parameter over some historical period. This gives a reflection of the average
behavior and its variability. The use of mean and standard deviation is applicable to
a wide variety of counters, timers, and resource measures. But these measures, by
themselves, are typically too crude for intrusion detection purposes.

The mean and standard deviation of a parameter are simple measures to
calculate. Taken over a given period of time, these values provide a measure aver-
age behavior and its variability. These two calculations can be applied to a variety
of counters, timers, and resource measures. However, these two measures are
inadequate, by themselves, for effective intrusion detection.

M11_STAL4855_06_GE_C11.indd 385 9/8/16 8:47 PM

386   chapter 11 / Intruders

A multivariate calculation determines a correlate between two or more
variables. Intruder behavior may be characterized with greater confidence by con-
sidering such correlations (for example, processor time and resource usage, or login
frequency and session elapsed time).

A Markov process estimates transition probabilities among various states.
As an example, this model might be used to look at transitions between certain
commands.

A time series model observes and calculates values based on a sequence of
events over time. Such models can be used to detect a series of actions that happens
to rapidly or too slowly. A variety of statistical tests can be applied to characterize
abnormal timing.

An operational model can be used to characterize what is considered abnor-
mal, as opposed to performing an automated analysis of past audit records.
Typically, fixed limits are defined and intrusion is suspected for an observation that
is outside the limits. This type of approach works best where intruder behavior can
be deduced from certain types of activities. For example, a large number of login
attempts over a short period suggests an attempted intrusion.

As an example of the use of these various metrics and models, Table 11.1
shows various measures considered or tested for the Stanford Research Institute
(SRI) Intrusion Detection System (IDES) [ANDE95, JAVI91] and the follow-on
program Emerald [NEUM99].

The main advantage of the use of statistical profiles is that a prior knowledge
of security flaws is not required. The detector program learns what is “normal”
behavior and then looks for deviations. The approach is not based on system-
dependent characteristics and vulnerabilities. Thus, it should be readily portable
among a variety of systems.

Rule-Based Intrusion Detection

Rule-based techniques detect intrusion by observing events in the system and apply-
ing a set of rules that lead to a decision regarding whether a given pattern of activity
is or is not suspicious. In very general terms, we can characterize all approaches as
focusing on either anomaly detection or penetration identification, although there is
some overlap in these approaches.

Rule-based anomaly detection is similar in terms of its approach and strengths
to statistical anomaly detection. With the rule-based approach, historical audit
records are analyzed to identify usage patterns and to automatically generate rules
that describe those patterns. Rules may represent past behavior patterns of users,
programs, privileges, time slots, terminals, and so on. Current behavior is then
observed, and each transaction is matched against the set of rules to determine if it
conforms to any historically observed pattern of behavior.

As with statistical anomaly detection, rule-based anomaly detection does not
require knowledge of security vulnerabilities within the system. Rather, the scheme
is based on observing past behavior and, in effect, assuming that the future will be
like the past. In order for this approach to be effective, a rather large database of
rules will be needed. For example, a scheme described in [VACC89] contains any-
where from 104 to 106 rules.

M11_STAL4855_06_GE_C11.indd 386 9/8/16 8:47 PM

11.2 / Intrusion Detection  387

Rule-based penetration identification takes a very different approach to
intrusion detection. The key feature of such systems is the use of rules for identi-
fying known penetrations or penetrations that would exploit known weaknesses.
Rules can also be defined that identify suspicious behavior, even when the behavior
is within the bounds of established patterns of usage. Typically, the rules used in
these systems are specific to the machine and operating system. The most fruitful
approach to developing such rules is to analyze attack tools and scripts collected on
the Internet. These rules can be supplemented with rules generated by knowledge-
able security personnel. In this latter case, the normal procedure is to interview
system administrators and security analysts to collect a suite of known penetration
scenarios and key events that threaten the security of the target system.

Measure Model Type of Intrusion Detected

Login and Session Activity

Login frequency by day and
time

Mean and standard
deviation

Intruders may be likely to log in during off-hours

Frequency of login at different
locations

Mean and standard
deviation

Intruders may log in from a location that a particu-
lar user rarely or never uses

Time since last login Operational Break in on a “dead” account
Elapsed time per session Mean and standard

deviation
Significant deviations might indicate masquerader

Quantity of output to location Mean and standard
deviation

Excessive amounts of data transmitted to remote
locations could signify leakage of sensitive data

Session resource utilization Mean and standard
deviation

Unusual processor or I/O levels could signal an
intruder

Password failures at login Operational Attempted break-in by password guessing
Failures to login from specified
terminals

Operational Attempted break-in

Command or Program Execution Activity

Execution frequency Mean and standard
deviation

May detect intruders, who are likely to use differ-
ent commands, or a successful penetration by a
legitimate user, who has gained access to privileged
commands

Program resource utilization Mean and standard
deviation

An abnormal value might suggest injection of a
virus or Trojan horse, which performs side-effects
that increase I/O or processor utilization

Execution denials Operational model May detect penetration attempt by individual user
who seeks higher privileges

File Access Activity

Read, write, create, delete
frequency

Mean and standard
deviation

Abnormalities for read and write access for individ-
ual users may signify masquerading or browsing

Records read, written Mean and standard
deviation

Abnormality could signify an attempt to obtain sen-
sitive data by inference and aggregation

Failure count for read, write,
create, delete

Operational May detect users who persistently attempt to access
unauthorized files

Table 11.1  Measures That May Be Used for Intrusion Detection

M11_STAL4855_06_GE_C11.indd 387 9/8/16 8:47 PM

388   chapter 11 / Intruders

A simple example of the type of rules that can be used is found in NIDX, an
early system that used heuristic rules that can be used to assign degrees of suspicion
to activities [BAUE88]. Example heuristics are the following:

1.	 Suspicious activity: A user accesses the personal directory of another user and
attempts to read files in that directory.

2.	 Suspicious activity: A user accesses the personal directory of another user and
attempts to write or create files in that directory.

3.	 Expected activity: A user logs in after hours and accesses the same file he or
she accessed during business hours.

4.	 Suspicious activity: A user opens a disk devices directly rather than relying on
higher-level operating system utilities.

5.	 Suspicious activity: A user is logged onto one system twice at the same time.

6.	 Suspicious activity: A user makes copies of system programs.

The penetration identification scheme used in IDES is representative of the
strategy followed. Audit records are examined as they are generated, and they are
matched against the rule base. If a match is found, then the user’s suspicion rating
is increased. If enough rules are matched, then the rating will pass a threshold that
results in the reporting of an anomaly.

The IDES approach is based on an examination of audit records. A weakness
of this plan is its lack of flexibility. For a given penetration scenario, there may be
a number of alternative audit record sequences that could be produced, each vary-
ing from the others slightly or in subtle ways. It may be difficult to pin down all
these variations in explicit rules. Another method is to develop a higher-level model
independent of specific audit records. An example of this is a state transition model
known as USTAT [VIGN02, ILGU95]. USTAT deals in general actions rather than
the detailed specific actions recorded by the UNIX auditing mechanism. USTAT
is implemented on a SunOS system that provides audit records on 239 events. Of
these, only 28 are used by a preprocessor, which maps these onto 10 general actions
(Table 11.2). Using just these actions and the parameters that are invoked with each
action, a state transition diagram is developed that characterizes suspicious activ-
ity. Because a number of different auditable events map into a smaller number of
actions, the rule-creation process is simpler. Furthermore, the state transition dia-
gram model is easily modified to accommodate newly learned intrusion behaviors.

The Base-Rate Fallacy

To be of practical use, an intrusion detection system should detect a substantial
percentage of intrusions while keeping the false alarm rate at an acceptable level.
If only a modest percentage of actual intrusions are detected, the system provides a
false sense of security. On the other hand, if the system frequently triggers an alert
when there is no intrusion (a false alarm), then either system managers will begin to
ignore the alarms or much time will be wasted analyzing the false alarms.

Unfortunately, because of the nature of the probabilities involved, it is very
difficult to meet the standard of high rate of detections with a low rate of false
alarms. In general, if the actual numbers of intrusions is low compared to the

M11_STAL4855_06_GE_C11.indd 388 9/8/16 8:47 PM

11.2 / Intrusion Detection  389

number of legitimate uses of a system, then the false alarm rate will be high unless
the test is extremely discriminating. This is an example of a phenomenon known as
the base-rate fallacy. A study of existing intrusion detection systems, reported in
[AXEL00], indicated that current systems have not overcome the problem of the
base-rate fallacy. See Appendix J for a brief background on the mathematics of
this problem.

Distributed Intrusion Detection

Traditionally, work on intrusion detection systems focused on single-system stand-
alone facilities. The typical organization, however, needs to defend a distributed
collection of hosts supported by a LAN or internetwork. Although it is possible to
mount a defense by using stand-alone intrusion detection systems on each host, a
more effective defense can be achieved by coordination and cooperation among
intrusion detection systems across the network.

Porras points out the following major issues in the design of a distributed
intrusion detection system [PORR92]:

■■ A distributed intrusion detection system may need to deal with different audit
record formats. In a heterogeneous environment, different systems will employ
different native audit collection systems and, if using intrusion detection, may
employ different formats for security-related audit records.

■■ One or more nodes in the network will serve as collection and analysis points
for the data from the systems on the network. Thus, either raw audit data or
summary data must be transmitted across the network. Therefore, there is a
requirement to assure the integrity and confidentiality of these data. Integrity
is required to prevent an intruder from masking his or her activities by alter-
ing the transmitted audit information. Confidentiality is required because the
transmitted audit information could be valuable.

USTAT Action SunOS Event Type

Read open_r, open_rc, open_rtc, open_rwc, open_rwtc, open_rt, open_rw,
open_rwt

Write truncate, ftruncate, creat, open_rtc, open_rwc, open_rwtc, open_rt,
open_rw, open_rwt, open_w, open_wt, open_wc, open_wct

Create mkdir, creat, open_rc, open_rtc, open_rwc, open_rwtc, open_wc,
open_wtc, mknod

Delete rmdir, unlink

Execute exec, execve

Exit exit

Modify_Owner chown, fchown

Modify_Perm chmod, fchmod

Rename rename

Hardlink link

Table 11.2  USTAT Actions Versus SunOS Event Types

M11_STAL4855_06_GE_C11.indd 389 9/8/16 8:47 PM

390   chapter 11 / Intruders

■■ Either a centralized or decentralized architecture can be used. With a central-
ized architecture, there is a single central point of collection and analysis of
all audit data. This eases the task of correlating incoming reports but creates a
potential bottleneck and single point of failure. With a decentralized architec-
ture, there are more than one analysis centers, but these must coordinate their
activities and exchange information.

A good example of a distributed intrusion detection system is one developed
at the University of California at Davis [HEBE92, SNAP91]. A similar approach
has been taken for a project at Purdue [SPAF00, BALA98]. Figure 11.2 shows the
overall architecture, which consists of three main components:

■■ Host agent module: An audit collection module operating as a background
process on a monitored system. Its purpose is to collect data on security-
related events on the host and transmit these to the central manager.

■■ LAN monitor agent module: Operates in the same fashion as a host agent
module except that it analyzes LAN traffic and reports the results to the cen-
tral manager.

■■ Central manager module: Receives reports from LAN monitor and host
agents, and processes and correlates these reports to detect intrusion.

The scheme is designed to be independent of any operating system or system
auditing implementation. Figure 11.3 shows the general approach that is taken. The
agent captures each audit record produced by the native audit collection system.
A filter is applied that retains only those records that are of security interest. These
records are then reformatted into a standardized format referred to as the host audit

Figure 11.2  Architecture for Distributed Intrusion Detection

Central manager

LAN monitor Host Host

Agent
module

Router

WAN

Manager
module

M11_STAL4855_06_GE_C11.indd 390 9/8/16 8:47 PM

11.2 / Intrusion Detection  391

record (HAR). Next, a template-driven logic module analyzes the records for suspi-
cious activity. At the lowest level, the agent scans for notable events that are of interest
independent of any past events. Examples include failed file accesses, accessing sys-
tem files, and changing a file’s access control. At the next higher level, the agent looks
for sequences of events, such as known attack patterns (signatures). Finally, the agent
looks for anomalous behavior of an individual user based on a historical profile of that
user, such as number of programs executed, number of files accessed, and the like.

When suspicious activity is detected, an alert is sent to the central manager.
The central manager includes an expert system that can draw inferences from
received data. The manager may also query individual systems for copies of HARs
to correlate with those from other agents.

The LAN monitor agent also supplies information to the central manager.
The LAN monitor agent audits host-host connections, services used, and volume of
traffic. It searches for significant events, such as sudden changes in network load,
the use of security-related services, and network activities such as rlogin.

The architecture depicted in Figures 11.2 and 11.3 is quite general and flexible.
It offers a foundation for a machine-independent approach that can expand from
stand-alone intrusion detection to a system that is able to correlate activity from
a number of sites and networks to detect suspicious activity that would otherwise
remain undetected.

Honeypots

A relatively recent innovation in intrusion detection technology is the honeypot.
Honeypots are decoy systems that are designed to lure a potential attacker away
from critical systems. Honeypots are designed to

■■ divert an attacker from accessing critical systems

■■ collect information about the attacker’s activity

■■ encourage the attacker to stay on the system long enough for administrators
to respond

Figure 11.3  Agent Architecture

OS audit
information

Alerts

Modi
cations

Query/
response

Notable
activity;

Signatures;
Noteworthy

sessions

Host audit record (HAR)

Filter for
security
interest

Reformat
function

OS audit
function

Analysis
module

Templates

Central
manager

Logic
module

M11_STAL4855_06_GE_C11.indd 391 9/8/16 8:47 PM

392   chapter 11 / Intruders

These systems are filled with fabricated information designed to appear valu-
able but that a legitimate user of the system wouldn’t access. Thus, any access to the
honeypot is suspect. The system is instrumented with sensitive monitors and event
loggers that detect these accesses and collect information about the attacker’s activ-
ities. Because any attack against the honeypot is made to seem successful, adminis-
trators have time to mobilize and log and track the attacker without ever exposing
productive systems.

The honeypot is a resource that has no production value. There is no legiti-
mate reason for anyone outside the network to interact with a honeypot. Thus, any
attempt to communicate with the system is most likely a probe, scan, or attack.
Conversely, if a honeypot initiates outbound communication, the system has prob-
ably been compromised.

Initial efforts involved a single honeypot computer with IP addresses designed
to attract hackers. More recent research has focused on building entire honeypot
networks that emulate an enterprise, possibly with actual or simulated traffic and
data. Once hackers are within the network, administrators can observe their behav-
ior in detail and figure out defenses.

Honeypots can be deployed in a variety of locations. Figure 11.4 illustrates
some possibilities. The location depends on a number of factors, such as the type
of information the organization is interested in gathering and the level of risk that
organizations can tolerate to obtain the maximum amount of data.

A honeypot outside the external firewall (location 1) is useful for tracking
attempts to connect to unused IP addresses within the scope of the network. A hon-
eypot at this location does not increase the risk for the internal network. The danger
of having a compromised system behind the firewall is avoided. Further, because
the honeypot attracts many potential attacks, it reduces the alerts issued by the fire-
wall and by internal IDS sensors, easing the management burden. The disadvantage
of an external honeypot is that it has little or no ability to trap internal attackers,
especially if the external firewall filters traffic in both directions.

The network of externally available services, such as Web and mail, often
called the DMZ (demilitarized zone), is another candidate for locating a honeypot
(location 2). The security administrator must assure that the other systems in the
DMZ are secure against any activity generated by the honeypot. A disadvantage of
this location is that a typical DMZ is not fully accessible, and the firewall typically
blocks traffic to the DMZ that attempts to access unneeded services. Thus, the fire-
wall either has to open up the traffic beyond what is permissible, which is risky, or
limit the effectiveness of the honeypot.

A fully internal honeypot (location 3) has several advantages. Its most impor-
tant advantage is that it can catch internal attacks. A honeypot at this location can
also detect a misconfigured firewall that forwards impermissible traffic from the
Internet to the internal network. There are several disadvantages. The most seri-
ous of these is if the honeypot is compromised so that it can attack other internal
systems. Any further traffic from the Internet to the attacker is not blocked by the
firewall because it is regarded as traffic to the honeypot only. Another difficulty for
this honeypot location is that, as with location 2, the firewall must adjust its filtering
to allow traffic to the honeypot, thus complicating firewall configuration and poten-
tially compromising the internal network.

M11_STAL4855_06_GE_C11.indd 392 9/8/16 8:47 PM

11.2 / Intrusion Detection  393

Intrusion Detection Exchange Format

To facilitate the development of distributed intrusion detection systems that can
function across a wide range of platforms and environments, standards are needed
to support interoperability. Such standards are the focus of the IETF Intrusion
Detection Working Group. The purpose of the working group is to define data
formats and exchange procedures for sharing information of interest to intrusion
detection and response systems and to management systems that may need to inter-
act with them.

The working group issued the following RFCs in 2007:

■■ Intrusion Detection Message Exchange Requirements (RFC 4766): This docu-
ment defines requirements for the Intrusion Detection Message Exchange
Format (IDMEF). The document also specifies requirements for a communi-
cation protocol for communicating IDMEF.

Figure 11.4  Example of Honeypot Deployment

Internet

External
�rewall

Honeypot

Honeypot

Honeypot

LAN switch
or router

LAN switch
or router

Internal
network

Service network
(Web, Mail, DNS, etc.)

2

 1

3

M11_STAL4855_06_GE_C11.indd 393 9/8/16 8:47 PM

394   chapter 11 / Intruders

■■ The Intrusion Detection Message Exchange Format (RFC 4765): This docu-
ment describes a data model to represent information exported by intrusion
detection systems and explains the rationale for using this model. An imple-
mentation of the data model in the Extensible Markup Language (XML) is
presented, an XML Document Type Definition is developed, and examples
are provided.

■■ The Intrusion Detection Exchange Protocol (RFC 4767): This document
describes the Intrusion Detection Exchange Protocol (IDXP), an application-
level protocol for exchanging data between intrusion detection entities. IDXP
supports mutual authentication, integrity, and confidentiality over a connec-
tion-oriented protocol.

Figure 11.5 illustrates the key elements of the model on which the intrusion
detection message exchange approach is based. This model does not correspond
to any particular product or implementation, but its functional components are the
key elements of any IDS. The functional components are as follows:

Figure 11.5  Model for Intrusion Detection Message Exchange

Response

Activity

Event

Event

Alert

Noti�cation

Operator

Administrator

Security
policy

Security
policy

M11_STAL4855_06_GE_C11.indd 394 9/8/16 8:47 PM

11.2 / Intrusion Detection  395

■■ Data source: The raw data that an IDS uses to detect unauthorized or
undesired activity. Common data sources include network packets, operat-
ing system audit logs, application audit logs, and system-generated check-
sum data.

■■ Sensor: Collects data from the data source. The sensor forwards events to the
analyzer.

■■ Analyzer: The ID component or process that analyzes the data collected by
the sensor for signs of unauthorized or undesired activity or for events that
might be of interest to the security administrator. In many existing IDSs, the
sensor and the analyzer are part of the same component.

■■ Administrator: The human with overall responsibility for setting the security
policy of the organization, and, thus, for decisions about deploying and config-
uring the IDS. This may or may not be the same person as the operator of the
IDS. In some organizations, the administrator is associated with the network
or systems administration groups. In other organizations, it’s an independent
position.

■■ Manager: The ID component or process from which the operator manages the
various components of the ID system. Management functions typically include
sensor configuration, analyzer configuration, event notification management,
data consolidation, and reporting.

■■ Operator: The human that is the primary user of the IDS manager. The opera-
tor often monitors the output of the IDS and initiates or recommends further
action.

In this model, intrusion detection proceeds in the following manner. The sensor
monitors data sources looking for suspicious activity, such as network sessions
showing unexpected telnet activity, operating system log file entries showing a user
attempting to access files to which he or she is not authorized to have access, and
application log files showing persistent login failures. The sensor communicates sus-
picious activity to the analyzer as an event, which characterizes an activity within a
given period of time. If the analyzer determines that the event is of interest, it sends
an alert to the manager component that contains information about the unusual
activity that was detected, as well as the specifics of the occurrence. The manager
component issues a notification to the human operator. A response can be initiated
automatically by the manager component or by the human operator. Examples of
responses include logging the activity; recording the raw data (from the data source)
that characterized the event; terminating a network, user, or application session; or
altering network or system access controls. The security policy is the predefined,
formally documented statement that defines what activities are allowed to take
place on an organization’s network or on particular hosts to support the organiza-
tion’s requirements. This includes, but is not limited to, which hosts are to be denied
external network access.

The specification defines formats for event and alert messages, message types,
and exchange protocols for communication of intrusion detection information.

M11_STAL4855_06_GE_C11.indd 395 9/8/16 8:47 PM

396   chapter 11 / Intruders

	 11.3	Password Management

The front line of defense against intruders is the password system. Virtually all mul-
tiuser systems require that a user provide not only a name or identifier (ID) but also
a password. The password serves to authenticate the ID of the individual logging on
to the system. In turn, the ID provides security in the following ways:

■■ The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

■■ The ID determines the privileges accorded to the user. A few users may have
supervisory or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

■■ The ID is used in what is referred to as discretionary access control.
For example, by listing the IDs of the other users, a user may grant permission
to them to read files owned by that user.

The Vulnerability of Passwords

In this subsection, we outline the main forms of attack against password-based
authentication and briefly outline a countermeasure strategy. The remainder of
Section 11.3 goes into more detail on the key countermeasures.

Typically, a system that uses password-based authentication maintains a
password file indexed by user ID. One technique that is typically used is to store
not the user’s password but a one-way hash function of the password, as described
subsequently.

We can identify the following attack strategies and countermeasures:

■■ Offline dictionary attack: Typically, strong access controls are used to protect
the system’s password file. However, experience shows that determined hack-
ers can frequently bypass such controls and gain access to the file. The attacker
obtains the system password file and compares the password hashes against
hashes of commonly used passwords. If a match is found, the attacker can gain
access by that ID/password combination. Countermeasures include controls to
prevent unauthorized access to the password file, intrusion detection measures
to identify a compromise, and rapid reissuance of passwords should the pass-
word file be compromised.

■■ Specific account attack: The attacker targets a specific account and submits
password guesses until the correct password is discovered. The standard coun-
termeasure is an account lockout mechanism, which locks out access to the
account after a number of failed login attempts. Typical practice is no more
than five access attempts.

■■ Popular password attack: A variation of the preceding attack is to use a popu-
lar password and try it against a wide range of user IDs. A user’s tendency is
to choose a password that is easily remembered; this unfortunately makes the

M11_STAL4855_06_GE_C11.indd 396 9/8/16 8:47 PM

11.3 / Password Management  397

password easy to guess. Countermeasures include policies to inhibit the selec-
tion by users of common passwords and scanning the IP addresses of authenti-
cation requests and client cookies for submission patterns.

■■ Password guessing against single user: The attacker attempts to gain knowl-
edge about the account holder and system password policies and uses that
knowledge to guess the password. Countermeasures include training in and
enforcement of password policies that make passwords difficult to guess.
Such policies address the secrecy, minimum length of the password, character
set, prohibition against using well-known user identifiers, and length of time
before the password must be changed.

■■ Workstation hijacking: The attacker waits until a logged-in workstation is
unattended. The standard countermeasure is automatically logging the work
station out after a period of inactivity. Intrusion detection schemes can be used
to detect changes in user behavior.

■■ Exploiting user mistakes: If the system assigns a password, then the user is
more likely to write it down because it is difficult to remember. This situation
creates the potential for an adversary to read the written password. A user
may intentionally share a password, to enable a colleague to share files, for
example. Also, attackers are frequently successful in obtaining passwords by
using social engineering tactics that trick the user or an account manager into
revealing a password. Many computer systems are shipped with preconfigured
passwords for system administrators. Unless these preconfigured passwords
are changed, they are easily guessed. Countermeasures include user training,
intrusion detection, and simpler passwords combined with another authentica-
tion mechanism.

■■ Exploiting multiple password use: Attacks can also become much more effec-
tive or damaging if different network devices share the same or a similar pass-
word for a given user. Countermeasures include a policy that forbids the same
or similar password on particular network devices.

■■ Electronic monitoring: If a password is communicated across a network to log
on to a remote system, it is vulnerable to eavesdropping. Simple encryption
will not fix this problem, because the encrypted password is, in effect, the pass-
word and can be observed and reused by an adversary.

The Use of Hashed Passwords

A widely used password security technique is the use of hashed passwords and a salt
value. This scheme is found on virtually all UNIX variants as well as on a number
of other operating systems. The following procedure is employed (Figure 11.6a).
To load a new password into the system, the user selects or is assigned a password.
This password is combined with a fixed-length salt value [MORR79]. In older
implementations, this value is related to the time at which the password is assigned
to the user. Newer implementations use a pseudorandom or random number. The
password and salt serve as inputs to a hashing algorithm to produce a fixed-length
hash code. The hash algorithm is designed to be slow to execute to thwart attacks.
The hashed password is then stored, together with a plaintext copy of the salt, in

M11_STAL4855_06_GE_C11.indd 397 9/8/16 8:47 PM

398   chapter 11 / Intruders

the password file for the corresponding user ID. The hashed-password method has
been shown to be secure against a variety of cryptanalytic attacks [WAGN00].

When a user attempts to log on to a UNIX system, the user provides an ID
and a password (Figure 11.6b). The operating system uses the ID to index into the
password file and retrieve the plaintext salt and the encrypted password. The salt
and user-supplied password are used as input to the encryption routine. If the result
matches the stored value, the password is accepted.

Figure 11.6  UNIX Password Scheme

User IDSalt

Password

Load

Select

(a) Loading a new password

(b) Verifying a password

Salt

•
•
•

Password �le

Hash code

User ID
User ID

Salt

Password �le

Slow hash
function

Salt

Hashed password

Password

Slow hash
function

Compare

Hash code

M11_STAL4855_06_GE_C11.indd 398 9/8/16 8:47 PM

11.3 / Password Management  399

The salt serves three purposes:

■■ It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned differ-
ent salt values. Hence, the hashed passwords of the two users will differ.

■■ It greatly increases the difficulty of offline dictionary attacks. For a salt of
length b bits, the number of possible passwords is increased by a factor of 2b,
increasing the difficulty of guessing a password in a dictionary attack.

■■ It becomes nearly impossible to find out whether a person with passwords on
two or more systems has used the same password on all of them.

To see the second point, consider the way that an offline dictionary attack
would work. The attacker obtains a copy of the password file. Suppose first that the
salt is not used. The attacker’s goal is to guess a single password. To that end, the
attacker submits a large number of likely passwords to the hashing function. If any
of the guesses matches one of the hashes in the file, then the attacker has found a
password that is in the file. But faced with the UNIX scheme, the attacker must take
each guess and submit it to the hash function once for each salt value in the diction-
ary file, multiplying the number of guesses that must be checked.

There are two threats to the UNIX password scheme. First, a user can gain
access on a machine using a guest account or by some other means and then run
a password guessing program, called a password cracker, on that machine. The
attacker should be able to check many thousands of possible passwords with little
resource consumption. In addition, if an opponent is able to obtain a copy of the
password file, then a cracker program can be run on another machine at leisure.
This enables the opponent to run through millions of possible passwords in a rea-
sonable period.

UNIX Implementations  Since the original development of UNIX, most implemen-
tations have relied on the following password scheme. Each user selects a password
of up to eight printable characters in length. This is converted into a 56-bit value
(using 7-bit ASCII) that serves as the key input to an encryption routine. The hash
routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The modi-
fied DES algorithm is executed with a data input consisting of a 64-bit block of
zeros. The output of the algorithm then serves as input for a second encryption.
This process is repeated for a total of 25 encryptions. The resulting 64-bit output is
then translated into an 11-character sequence. The modification of the DES algo-
rithm converts it into a one-way hash function. The crypt(3) routine is designed to
discourage guessing attacks. Software implementations of DES are slow compared
to hardware versions, and the use of 25 iterations multiplies the time required by 25.

This particular implementation is now considered woefully inadequate. For
example, [PERR03] reports the results of a dictionary attack using a supercom-
puter. The attack was able to process over 50 million password guesses in about 80
minutes. Further, the results showed that for about $10,000 anyone should be able
to do the same in a few months using one uniprocessor machine. Despite its known
weaknesses, this UNIX scheme is still often required for compatibility with existing
account management software or in multivendor environments.

M11_STAL4855_06_GE_C11.indd 399 9/8/16 8:47 PM

400   chapter 11 / Intruders

There are other, much stronger, hash/salt schemes available for UNIX.
The recommended hash function for many UNIX systems, including Linux, Solaris,
and FreeBSD (a widely used open source UNIX implementation), is based on the
MD5 secure hash algorithm (which is similar to, but not as secure as SHA-1). The
MD5 crypt routine uses a salt of up to 48 bits and effectively has no limitations on
password length. It produces a 128-bit hash value. It is also far slower than crypt(3).
To achieve the slowdown, MD5 crypt uses an inner loop with 1000 iterations.

Probably the most secure version of the UNIX hash/salt scheme was devel-
oped for OpenBSD, another widely used open source UNIX. This scheme, reported
in [PROV99], uses a hash function based on the Blowfish symmetric block cipher.
The hash function, called Bcrypt, is quite slow to execute. Bcrypt allows passwords
of up to 55 characters in length and requires a random salt value of 128 bits, to
produce a 192-bit hash value. Bcrypt also includes a cost variable; an increase in
the cost variable causes a corresponding increase in the time required to perform a
Bcyrpt hash. The cost assigned to a new password is configurable, so that adminis-
trators can assign a higher cost to privileged users.

Password Cracking Approaches  The traditional approach to password guess-
ing, or password cracking as it is called, is to develop a large dictionary of pos-
sible passwords and to try each of these against the password file. This means that
each password must be hashed using each available salt value and then compared
to stored hash values. If no match is found, then the cracking program tries varia-
tions on all the words in its dictionary of likely passwords. Such variations include
backwards spelling of words, additional numbers or special characters, or sequence
of characters,

An alternative is to trade off space for time by precomputing potential hash
values. In this approach the attacker generates a large dictionary of possible pass-
words. For each password, the attacker generates the hash values associated with
each possible salt value. The result is a mammoth table of hash values known as a
rainbow table. For example, [OECH03] showed that using 1.4 GB of data, he could
crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. This
approach can be countered by using a sufficiently large salt value and a sufficiently
large hash length. Both the FreeBSD and OpenBSD approaches should be secure
from this attack for the foreseeable future.

User Password Choices

Even the stupendous guessing rates referenced in the preceding section do not
yet make it feasible for an attacker to use a dumb brute-force technique of trying
all possible combinations of characters to discover a password. Instead, password
crackers rely on the fact that some people choose easily guessable passwords.

Some users, when permitted to choose their own password, pick one that is
absurdly short. One study at Purdue University [SPAF92a] observed password
change choices on 54 machines, representing approximately 7000 user accounts.
Almost 3% of the passwords were three characters or fewer in length. An attacker
could begin the attack by exhaustively testing all possible passwords of length 3 or

M11_STAL4855_06_GE_C11.indd 400 9/8/16 8:47 PM

11.3 / Password Management  401

fewer. A simple remedy is for the system to reject any password choice of fewer
than, say, six characters or even to require that all passwords be exactly eight char-
acters in length. Most users would not complain about such a restriction.

Password length is only part of the problem. Many people, when permitted
to choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth. This makes the
job of password cracking straightforward. The cracker simply has to test the pass-
word file against lists of likely passwords. Because many people use guessable pass-
words, such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords. The result, which the author rightly character-
izes as frightening, is shown in Table 11.3. In all, nearly one-fourth of the passwords
were guessed. The following strategy was used:

1.	 Try the user’s name, initials, account name, and other relevant personal infor-
mation. In all, 130 different permutations for each user were tried.

2.	 Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

3.	 Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word uppercase,
reversing the word, changing the letter “o” to the digit “zero,” and so on. These
permutations added another 1 million words to the list.

4.	 Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved in the neighborhood of 3 million words. Using the fastest
Thinking Machines implementation listed earlier, the time to encrypt all these
words for all possible salt values is under an hour. Keep in mind that such a thor-
ough search could produce a success rate of about 25%, whereas even a single hit
may be enough to gain a wide range of privileges on a system.

Access Control  One way to thwart a password attack is to deny the opponent
access to the password file. If the encrypted password portion of the file is acces-
sible only by a privileged user, then the opponent cannot read it without already
knowing the password of a privileged user. [SPAF92a] points out several flaws in
this strategy:

■■ Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. Once an attacker has gained access by some means, he or she may
wish to obtain a collection of passwords in order to use different accounts for
different logon sessions to decrease the risk of detection. Or a user with an
account may desire another user’s account to access privileged data or to sabo-
tage the system.

■■ An accident of protection might render the password file readable, thus
compromising all the accounts.

M11_STAL4855_06_GE_C11.indd 401 9/8/16 8:47 PM

402   chapter 11 / Intruders

Type of Password Search Size
Number of

Matches
Percentage of Passwords

Matched
Cost/Benefit

Ratioa

User/account name 130 368 2.7% 2.830

Character sequences 866 22 0.2% 0.025

Numbers 427 9 0.1% 0.021

Chinese 392 56 0.4% 0.143

Place names 628 82 0.6% 0.131

Common names 2239 548 4.0% 0.245

Female names 4280 161 1.2% 0.038

Male names 2866 140 1.0% 0.049

Uncommon names 4955 130 0.9% 0.026

Myths & legends 1246 66 0.5% 0.053

Shakespearean 473 11 0.1% 0.023

Sports terms 238 32 0.2% 0.134

Science fiction 691 59 0.4% 0.085

Movies and actors 99 12 0.1% 0.121

Cartoons 92 9 0.1% 0.098

Famous people 290 55 0.4% 0.190

Phrases and patterns 933 253 1.8% 0.271

Surnames 33 9 0.1% 0.273

Biology 58 1 0.0% 0.017

System dictionary 19683 1027 7.4% 0.052

Machine names 9018 132 1.0% 0.015

Mnemonics 14 2 0.0% 0.143

King James bible 7525 83 0.6% 0.011

Miscellaneous words 3212 54 0.4% 0.017

Yiddish words 56 0 0.0% 0.000

Asteroids 2407 19 0.1% 0.007

Total 62727 3340 24.2% 0.053
aComputed as the number of matches divided by the search size. The more words that needed to be tested for
a match, the lower the cost/benefit ratio.

Table 11.3  Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

■■ Some of the users have accounts on other machines in other protection
domains, and they use the same password. Thus, if the passwords could be
read by anyone on one machine, a machine in another location might be
compromised.

Thus, a more effective strategy would be to force users to select passwords that are
difficult to guess.

M11_STAL4855_06_GE_C11.indd 402 9/8/16 8:47 PM

11.3 / Password Management  403

Password Selection Strategies

The lesson from the two experiments just described ([SPAF92a], [KLEI90]) is that,
left to their own devices, many users choose a password that is too short or too easy
to guess. At the other extreme, if users are assigned passwords consisting of eight
randomly selected printable characters, password cracking is effectively impossible.
But it would be almost as impossible for most users to remember their passwords.
Fortunately, even if we limit the password universe to strings of characters that are
reasonably memorable, the size of the universe is still too large to permit practical
cracking. Our goal, then, is to eliminate guessable passwords while allowing the
user to select a password that is memorable. Four basic techniques are in use:

■■ User education
■■ Computer-generated passwords
■■ Reactive password checking
■■ Proactive password checking

Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strat-
egy is unlikely to succeed at most installations, particularly where there is a large
user population or a lot of turnover. Many users will simply ignore the guidelines.
Others may not be good judges of what is a strong password. For example, many
users (mistakenly) believe that reversing a word or capitalizing the last letter makes
a password unguessable.

Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password
is pronounceable, the user may have difficulty remembering it and so be tempted
to write it down. In general, computer-generated password schemes have a history
of poor acceptance by users. FIPS PUB 181 defines one of the best-designed auto-
mated password generators. The standard includes not only a description of the
approach but also a complete listing of the C source code of the algorithm. The
algorithm generates words by forming pronounceable syllables and concatenating
them to form a word. A random number generator produces a random stream of
characters used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically
runs its own password cracker to find guessable passwords. The system cancels any
passwords that are guessed and notifies the user. This tactic has a number of draw-
backs. First, it is resource intensive if the job is done right. Because a determined
opponent who is able to steal a password file can devote full CPU time to the task
for hours or even days, an effective reactive password checker is at a distinct disad-
vantage. Furthermore, any existing passwords remain vulnerable until the reactive
password checker finds them.

The most promising approach to improved password security is a proactive
password checker. In this scheme, a user is allowed to select his or her own pass-
word. However, at the time of selection, the system checks to see if the password is
allowable and, if not, rejects it. Such checkers are based on the philosophy that, with
sufficient guidance from the system, users can select memorable passwords from a
fairly large password space that are not likely to be guessed in a dictionary attack.

M11_STAL4855_06_GE_C11.indd 403 9/8/16 8:47 PM

404   chapter 11 / Intruders

The trick with a proactive password checker is to strike a balance between
user acceptability and strength. If the system rejects too many passwords, users will
complain that it is too hard to select a password. If the system uses some simple
algorithm to define what is acceptable, this provides guidance to password crackers
to refine their guessing technique. In the remainder of this subsection, we look at
possible approaches to proactive password checking.

The first approach is a simple system for rule enforcement. For example, the
following rules could be enforced:

■■ All passwords must be at least eight characters long.

■■ In the first eight characters, the passwords must include at least one each of
uppercase, lowercase, numeric digits, and punctuation marks.

These rules could be coupled with advice to the user. Although this approach is
superior to simply educating users, it may not be sufficient to thwart password
crackers. This scheme alerts crackers as to which passwords not to try but may still
make it possible to do password cracking.

Another possible procedure is simply to compile a large dictionary of pos-
sible “bad” passwords. When a user selects a password, the system checks to
make sure that it is not on the disapproved list. There are two problems with this
approach:

■■ Space: The dictionary must be very large to be effective. For example, the dic-
tionary used in the Purdue study [SPAF92a] occupies more than 30 megabytes
of storage.

■■ Time: The time required to search a large dictionary may itself be large. In
addition, to check for likely permutations of dictionary words, either those
words most be included in the dictionary, making it truly huge, or each search
must also involve considerable processing.

Bloom Filter

A technique [SPAF92a, SPAF92b] for developing an effective and efficient proactive
password checker that is based on rejecting words on a list has been implemented
on a number of systems, including Linux. It is based on the use of a Bloom filter
[BLOO70]. To begin, we explain the operation of the Bloom filter. A Bloom filter of
order k consists of a set of k independent hash functions H1(x), H2(x), c , Hk(x),
where each function maps a password into a hash value in the range 0 to N - 1.
That is,

Hi(Xj) = y 1 … i … k; 1 … j … D; 0 … y … N - 1

where

Xj = jth word in password dictionary
D = number of words in password dictionary

The following procedure is then applied to the dictionary:

1.	 A hash table of N bits is defined, with all bits initially set to 0.

M11_STAL4855_06_GE_C11.indd 404 9/8/16 8:47 PM

11.3 / Password Management  405

2.	 For each password, its k hash values are calculated, and the corresponding bits
in the hash table are set to 1. Thus, if Hi(Xj) = 67 for some (i, j), then the
sixty-seventh bit of the hash table is set to 1; if the bit already has the value 1,
it remains at 1.

When a new password is presented to the checker, its k hash values are
calculated. If all the corresponding bits of the hash table are equal to 1, then the
password is rejected. All passwords in the dictionary will be rejected. But there will
also be some “false positives” (i.e., passwords that are not in the dictionary but
that produce a match in the hash table). To see this, consider a scheme with two
hash functions. Suppose that the passwords undertaker and hulkhogan are in the
dictionary, but xG%#jj98 is not. Further suppose that

 H1(undertaker) = 25 H1(hulkhogan) = 83 H1(xG%#jj98) = 665

 H2(undertaker) = 998 H2(hulkhogan) = 665 H2(xG%#jj98) = 998

If the password xG%#jj98 is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash
scheme to minimize false positives. It can be shown that the probability of a false
positive can be approximated by:

P ≈ (1 - ekD/N)k = (1 - ek/R)k

or, equivalently,

R ≈
-k

ln(1 - P1/k)

where

k = number of hash functions

N = number of bits in hash table

D = number of words in dictionary
R = N/D, ratio of hash table size (bits) to dictionary size (words)

Figure 11.7 plots P as a function of R for various values of k. Suppose we have
a dictionary of 1 million words and we wish to have a 0.01 probability of rejecting a
password not in the dictionary. If we choose six hash functions, the required ratio is
R = 9.6. Therefore, we need a hash table of 9.6 * 106 bits or about 1.2 MBytes of
storage. In contrast, storage of the entire dictionary would require on the order of 8
MBytes. Thus, we achieve a compression of almost a factor of 7. Furthermore, pass-
word checking involves the straightforward calculation of six hash functions and is
independent of the size of the dictionary, whereas with the use of the full dictionary,
there is substantial searching.1

1The Bloom filter involves the use of probabilistic techniques. There is a small probability that some
passwords not in the dictionary will be rejected. It is often the case in designing algorithms that the use of
probabilistic techniques results in a less time-consuming or less complex solution, or both.

M11_STAL4855_06_GE_C11.indd 405 9/8/16 8:47 PM

406   chapter 11 / Intruders

Review Questions
	 11.1	 List and briefly define three classes of intruders.
	 11.2	 Give examples of intrusion.
	 11.3	 List the direct approaches that can be implemented to counter insider attacks.
	 11.4	 Explain how statistical anomaly detection and rule-based intrusion detection are

used to detect different types of intruders.
	 11.5	 List the tests that can be performed to determine if a user’s current activity is statisti-

cally anomalous or whether it is within acceptable parameters.
	 11.6	 What is the base- rate fallacy?

Figure 11.7  Performance of Bloom Filter

0.001

0.01

0.1

1

P
r [

fa
ls

e
po

si
tiv

e]

20151050
Ratio of hash table size (bits) to dictionary size (words)

4 hash functions

2 hash functions

6 hash functions

	 11.4	Key Terms, Review Questions, and Problems

Key Terms

audit record
base-rate fallacy
bloom filter
distributed intrusion detection
honeypot

intruder
intrusion detection
intrusion detection exchange

format
password

rainbow table
rule-based intrusion detection
salt value
signature detection
statistical anomaly detection

M11_STAL4855_06_GE_C11.indd 406 9/8/16 8:47 PM

11.4 / Key Terms, Review Questions, and Problems  407

Conservativeness
of signatures

Frequency
of alerts

More speci
c
or stricter

Less speci
c
or looser

	 11.7	 List the possible locations where a honeypot can be deployed.
	 11.8	 Briefly explain the purposes that a salt serves in the context of UNIX password

management.
	 11.9	 Discuss the threats to the UNIX password scheme.

Problems
	 11.1	 In the context of an IDS, we define a false positive to be an alarm generated by an

IDS in which the IDS alerts to a condition that is actually benign. A false negative
occurs when an IDS fails to generate an alarm when an alert-worthy condition is
in effect. Using the following diagram, depict two curves that roughly indicate false
positives and false negatives, respectively.

	 11.2	 The overlapping area of the two probability density functions of Figure 11.1 repre-
sents the region in which there is the potential for false positives and false negatives.
Further, Figure 11.1 is an idealized and not necessarily representative depiction of
the relative shapes of the two density functions. Suppose there is 1 actual intrusion
for every 1000 authorized users, and the overlapping area covers 1% of the autho-
rized users and 50% of the intruders.
a.	 Sketch such a set of density functions and argue that this is not an unreasonable

depiction.
b.	 Observe, that the overlap region equally covers authorized users and intruders.

Does it always mean there is equal probability that events in this region are by
authorized users and intruders? Justify your answer.

	 11.3	 An example of a host-based intrusion detection tool is the tripwire program. This
is a file integrity checking tool that scans files and directories on the system on a
regular basis and notifies the administrator of any changes. It uses a protected data-
base of cryptographic checksums for each file checked and compares this value with
that recomputed on each file as it is scanned. It must be configured with a list of
files and directories to check, and what changes, if any, are permissible to each. It
can allow, for example, log files to have new entries appended, but not for existing
entries to be changed. What are the advantages and disadvantages of using such a
tool? Consider the problem of determining which files should only change rarely,
which files may change more often and how, and which change frequently and hence
cannot be checked. Hence consider the amount of work in both the configuration of
the program and on the system administrator monitoring the responses generated.

	 11.4	 A taxicab was involved in a fatal hit-and-run accident at night. Two cab companies,
the Yellow and the Red, operate in the city. You are told that:
■	 85% of the cabs in the city are Yellow and 15% are Red.
■	 A witness identified the cab as Red.

M11_STAL4855_06_GE_C11.indd 407 9/8/16 8:47 PM

408   chapter 11 / Intruders

The court tested the reliability of the witness under the same circumstances that
existed on the night of the accident and concluded that the witness was correct in
identifying the color of the cab 90% of the time. What is the probability that the cab
involved in the incident was Red rather than Yellow?

	 11.5	 Explain the suitability or unsuitability of the following passwords:
a.	 anu 1998
b.	 5mimf2a3c (for 5 members in

my family 2 adults 3 children)
c.	 Coimbatore16
d.	 Windows

e.	 Olympics
f.	 msk@123
g.	 g.0987654
h.	 iamking

	 11.6	 An early attempt to force users to use less predictable passwords involved computer-
supplied passwords. The passwords were eight characters long and were taken from
the character set consisting of lowercase letters and digits. They were generated by a
pseudorandom number generator with 215 possible starting values. Using the technol-
ogy of the time, the time required to search through all character strings of length 8
from a 36-character alphabet was 112 years. Unfortunately, this is not a true reflec-
tion of the actual security of the system. Explain the problem.

	 11.7	 Assume that passwords are selected from five-character combinations of 26 alpha-
betic characters. Assume that an adversary is able to attempt passwords at a rate of
one per second.
a.	 Assuming no feedback to the adversary until each attempt has been completed,

what is the expected time to discover the correct password?
b.	 Assuming feedback to the adversary flagging an error as each incorrect character

is entered, what is the expected time to discover the correct password?
	 11.8	 Assume that source elements of length k are mapped in some uniform fashion into a

target elements of length p. If each digit can take on one of r values, then the number
of source elements is r k and the number of target elements is the smaller number r p.
A particular source element xi is mapped to a particular target element yj.
a.	 What is the probability that the correct source element can be selected by an

adversary on one try?
b.	 What is the probability that a different source element xk(xi ≠ xk) that results

in the same target element, yj, could be produced by an adversary?
c.	 What is the probability that the correct target element can be produced by an

adversary on one try?
	 11.9	 A phonetic password generator picks two segments randomly for each six-letter

password. The form of each segment is C9VC (consonant, digit, vowel, consonant),
where V = 6a, e, i, o, u7 and C ≠ V.
a.	 What is the total password population?
b.	 What is the probability of an adversary guessing a password correctly?

	 11.10	 Assume that passwords are limited to the use of the 95 printable ASCII characters
and that all passwords are 12 characters in length. Assume a password cracker with
an encryption rate of 6.4 million encryptions per second. How long will it take to test
exhaustively all possible passwords on a UNIX system?

	 11.11	 Because of the known risks of the UNIX password system, the SunOS-4.0 documen-
tation recommends that the password file be removed and replaced with a publicly
readable file called /etc/publickey. An entry in the file for user A consists of a user’s
identifier IDA, the user’s public key, PUa, and the corresponding private key PRa.
This private key is encrypted using DES with a key derived from the user’s login
password Pa. When A logs in, the system decrypts E(Pa, PRa) to obtain PRa.
a.	 The system then verifies that Pa was correctly supplied. How?
b.	 How can an opponent attack this system?

	 11.12	 The encryption scheme used for UNIX passwords is one way; it is not possible to
reverse it. Therefore, would it be accurate to say that this is, in fact, a hash code
rather than an encryption of the password?

M11_STAL4855_06_GE_C11.indd 408 9/8/16 8:47 PM

11.4 / Key Terms, Review Questions, and Problems  409

	 11.13	 It was stated that the inclusion of the salt in the UNIX password scheme increases
the difficulty of guessing by a factor of 4096. But the salt is stored in plaintext in the
same entry as the corresponding ciphertext password. Therefore, those two charac-
ters are known to the attacker and need not be guessed. Why is it asserted that the
salt increases security?

	 11.14	 Assuming that you have successfully answered the preceding problem and under-
stand the significance of the salt, here is another question. Wouldn’t it be possible to
thwart completely all password crackers by dramatically increasing the salt size to,
say, 24 or 48 bits?

	 11.15	 Consider the Bloom filter discussed in Section 11.3. Define k = number of hash
functions; N = number of bits in hash table; and D = number of words in dictionary.
a.	 Show that the expected number of bits in the hash table that are equal to zero is

expressed as

f = a1 -
k
N
b

D

b.	 Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

P = (1 - f)k

c.	 Show that the preceding expression can be approximated as

P ≈ (1 - e-kD/N)k

	 11.16	 Design a file access system to allow certain users read and write access to files,
depending on authorization set up by the system. The instructions should be of the
format:

ReadFile(F1, User A):   User A has read access to file F1
WriteFile(F2, User A):  User A has write access to file F2
ExecuteFile(F3, User B):  User B has execute access to file F3

		 Each file has a header record, which contains authorization privileges; that is, a list of
users who can read and write. The file is to be encrypted by a key that is not shared by
the users but known only to the system.

M11_STAL4855_06_GE_C11.indd 409 9/8/16 8:47 PM

410410

12.1	 The Need for Firewalls

12.2	 Firewall Characteristics and Access Policy

12.3	 Types of Firewalls

Packet Filtering Firewall
Stateful Inspection Firewalls
Application-Level Gateway
Circuit-Level Gateway

12.4	 Firewall Basing

Bastion Host
Host-Based Firewalls
Personal Firewall

12.5	 Firewall Location and Configurations

DMZ Networks
Virtual Private Networks
Distributed Firewalls
Summary of Firewall Locations and Topologies

12.6	 Key Terms, Review Questions, and Problems

Chapter

Firewalls

M12_STAL4855_06_GE_C12.indd 410 8/10/16 9:07 AM

12.1 / The Need for Firewalls  411

Firewalls can be an effective means of protecting a local system or network of systems
from network-based security threats while at the same time affording access to the
outside world via wide area networks and the Internet.

	 12.1	The Need for Firewalls

Information systems in corporations, government agencies, and other organizations
have undergone a steady evolution. The following are notable developments:

■■ Centralized data processing system, with a central mainframe supporting a
number of directly connected terminals

■■ Local area networks (LANs) interconnecting PCs and terminals to each other
and the mainframe

■■ Premises network, consisting of a number of LANs, interconnecting PCs,
servers, and perhaps a mainframe or two

■■ Enterprise-wide network, consisting of multiple, geographically distributed
premises networks interconnected by a private wide area network (WAN)

■■ Internet connectivity, in which the various premises networks all hook into
the Internet and may or may not also be connected by a private WAN

Internet connectivity is no longer optional for organizations. The information
and services available are essential to the organization. Moreover, individual users
within the organization want and need Internet access, and if this is not provided via
their LAN, they will use dial-up capability from their PC to an Internet service pro-
vider (ISP). However, while Internet access provides benefits to the organization, it
enables the outside world to reach and interact with local network assets. This cre-
ates a threat to the organization. While it is possible to equip each workstation and
server on the premises network with strong security features, such as intrusion pro-
tection, this may not be sufficient and in some cases is not cost-effective. Consider
a network with hundreds or even thousands of systems, running various operating
systems, such as different versions of UNIX and Windows. When a security flaw

Learning Objectives

After studying this chapter, you should be able to:

◆◆ Explain the role of firewalls as part of a computer and network security
strategy.

◆◆ List the key characteristics of firewalls.

◆◆ Discuss the various basing options for firewalls.

◆◆ Understand the relative merits of various choices for firewall location and
configurations.

M12_STAL4855_06_GE_C12.indd 411 8/10/16 9:07 AM

412   chapter 12 / Firewalls

is discovered, each potentially affected system must be upgraded to fix that flaw.
This requires scaleable configuration management and aggressive patching to func-
tion effectively. While difficult, this is possible and is necessary if only host-based
security is used. A widely accepted alternative or at least complement to host-based
security services is the firewall. The firewall is inserted between the premises net-
work and the Internet to establish a controlled link and to erect an outer security
wall or perimeter. The aim of this perimeter is to protect the premises network from
Internet-based attacks and to provide a single choke point where security and audit-
ing can be imposed. The firewall may be a single computer system or a set of two or
more systems that cooperate to perform the firewall function.

The firewall, then, provides an additional layer of defense, insulating the inter-
nal systems from external networks. This follows the classic military doctrine of
“defense in depth,” which is just as applicable to IT security.

	 12.2	Firewall Characteristics and Access Policy

[BELL94b] lists the following design goals for a firewall:

1.	 All traffic from inside to outside, and vice versa, must pass through the fire-
wall. This is achieved by physically blocking all access to the local network
except via the firewall. Various configurations are possible, as explained later
in this chapter.

2.	 Only authorized traffic, as defined by the local security policy, will be allowed
to pass. Various types of firewalls are used, which implement various types of
security policies, as explained later in this chapter.

3.	 The firewall itself is immune to penetration. This implies the use of a hardened
system with a secured operating system. Trusted computer systems are suitable
for hosting a firewall and often required in government applications.

A critical component in the planning and implementation of a firewall is
specifying a suitable access policy. This lists the types of traffic authorized to pass
through the firewall, including address ranges, protocols, applications, and content
types. This policy should be developed from the organization’s information security
risk assessment and policy. This policy should be developed from a broad specifica-
tion of which traffic types the organization needs to support. It is then refined to
detail the filter elements we discuss next, which can then be implemented within an
appropriate firewall topology.

SP 800-41-1 (Guidelines on Firewalls and Firewall Policy, September 2009)
lists a range of characteristics that a firewall access policy could use to filter traffic,
including:

■■ IP Address and Protocol Values: Controls access based on the source or
destination addresses and port numbers, direction of flow being inbound or
outbound, and other network and transport layer characteristics. This type of
filtering is used by packet filter and stateful inspection firewalls. It is typically
used to limit access to specific services.

M12_STAL4855_06_GE_C12.indd 412 8/10/16 9:07 AM

12.2 / Firewall Characteristics and Access Policy  413

■■ Application Protocol: Controls access on the basis of authorized application
protocol data. This type of filtering is used by an application-level gateway
that relays and monitors the exchange of information for specific applica-
tion protocols, for example, checking SMTP e-mail for spam, or HTPP Web
requests to authorized sites only.

■■ User Identity: Controls access based on the users identity, typically for inside
users who identify themselves using some form of secure authentication tech-
nology, such as IPSec (Chapter 9).

■■ Network Activity: Controls access based on considerations such as the time
or request, for example, only in business hours; rate of requests, for example,
to detect scanning attempts; or other activity patterns.

Before proceeding to the details of firewall types and configurations, it is best
to summarize what one can expect from a firewall. The following capabilities are
within the scope of a firewall:

1.	 A firewall defines a single choke point that keeps unauthorized users out of
the protected network, prohibits potentially vulnerable services from enter-
ing or leaving the network, and provides protection from various kinds of IP
spoofing and routing attacks. The use of a single choke point simplifies security
management because security capabilities are consolidated on a single system
or set of systems.

2.	 A firewall provides a location for monitoring security-related events. Audits
and alarms can be implemented on the firewall system.

3.	 A firewall is a convenient platform for several Internet functions that are not
security related. These include a network address translator, which maps local
addresses to Internet addresses, and a network management function that
audits or logs Internet usage.

4.	 A firewall can serve as the platform for IPsec. Using the tunnel mode capa-
bility described in Chapter 9, the firewall can be used to implement virtual
private networks.

Firewalls have their limitations, including the following:

1.	 The firewall cannot protect against attacks that bypass the firewall. Internal
systems may have dial-out capability to connect to an ISP. An internal LAN
may support a modem pool that provides dial-in capability for traveling
employees and telecommuters.

2.	 The firewall may not protect fully against internal threats, such as a disgrun-
tled employee or an employee who unwittingly cooperates with an external
attacker.

3.	 An improperly secured wireless LAN may be accessed from outside the
organization. An internal firewall that separates portions of an enterprise
network cannot guard against wireless communications between local systems
on different sides of the internal firewall.

4.	 A laptop, PDA, or portable storage device may be used and infected outside
the corporate network, and then attached and used internally.

M12_STAL4855_06_GE_C12.indd 413 8/10/16 9:07 AM

414   chapter 12 / Firewalls

	 12.3	Types of Firewalls

A firewall can monitor network traffic at a number of levels, from low-level net-
work packets either individually or as part of a flow, to all traffic within a transport
connection, up to inspecting details of application protocols. The choice of which
level is appropriate is determined by the desired firewall access policy. It can oper-
ate as a positive filter, allowing to pass only packets that meet specific criteria, or as
a negative filter, rejecting any packet that meets certain criteria. The criteria imple-
ment the access policy for the firewall, that we discussed in the previous section.
Depending on the type of firewall, it may examine one or more protocol headers in
each packet, the payload of each packet, or the pattern generated by a sequence of
packets. In this section, we look at the principal types of firewalls.

Packet Filtering Firewall

A packet filtering firewall applies a set of rules to each incoming and outgoing IP
packet and then forwards or discards the packet (Figure 12.1b). The firewall is typi-
cally configured to filter packets going in both directions (from and to the internal
network). Filtering rules are based on information contained in a network packet:

■■ Source IP address: The IP address of the system that originated the IP packet
(e.g., 192.178.1.1)

■■ Destination IP address: The IP address of the system the IP packet is trying
to reach (e.g., 192.168.1.2)

■■ Source and destination transport-level address: The transport-level (e.g., TCP
or UDP) port number, which defines applications such as SNMP or TELNET

■■ IP protocol field: Defines the transport protocol

■■ Interface: For a firewall with three or more ports, which interface of the fire-
wall the packet came from or which interface of the firewall the packet is
destined for

The packet filter is typically set up as a list of rules based on matches to fields
in the IP or TCP header. If there is a match to one of the rules, that rule is invoked
to determine whether to forward or discard the packet. If there is no match to any
rule, then a default action is taken. Two default policies are possible:

■■ Default = discard: That which is not expressly permitted is prohibited.

■■ Default = forward: That which is not expressly prohibited is permitted.

The default discard policy is more conservative. Initially, everything is blocked,
and services must be added on a case-by-case basis. This policy is more visible to
users, who are more likely to see the firewall as a hindrance. However, this is the
policy likely to be preferred by businesses and government organizations. Further,
visibility to users diminishes as rules are created. The default forward policy increases
ease of use for end users but provides reduced security; the security administrator
must, in essence, react to each new security threat as it becomes known. This policy
may be used by generally more open organizations, such as universities.

M12_STAL4855_06_GE_C12.indd 414 8/10/16 9:07 AM

12.3 / Types of Firewalls  415

Figure 12.1  Types of Firewalls

External (untrusted) network
(e.g., Internet)

Internal (protected) network
(e.g., enterprise network) Firewall

(a) General model

(d) Application proxy �rewall

Physical

Network
access

Internet

Transport

Application

Physical

Network
access

Internet

Transport

Application

Application proxy

External
transport

connection

Internal
transport

connection

(b) Packet �ltering �rewall

Physical

Network
access

Internet

Transport

ApplicationEnd-to-end
transport

connection

End-to-end
transport

connection

(c) Stateful inspection �rewall

Physical

Network
access

Internet

Transport

ApplicationEnd-to-end
transport

connection

End-to-end
transport

connection

(e) Circuit-level proxy �rewall

Physical

Network
access

Internet

Transport

Application

Physical

Network
access

Internet

Transport

Application

Circuit-level proxy

External
transport

connection

Internal
transport

connection

State
info

Table 12.1 is a simplified example of a ruleset for SMTP traffic. The goal is to
allow inbound and outbound e-mail traffic but to block all other traffic. The rules
are applied top to bottom to each packet.

M12_STAL4855_06_GE_C12.indd 415 8/10/16 9:07 AM

416   chapter 12 / Firewalls

A.	Inbound mail from an external source is allowed (port 25 is for SMTP
incoming).

B.	 This rule is intended to allow a response to an inbound SMTP connection.

C.	 Outbound mail to an external source is allowed.

D.	 This rule is intended to allow a response to an inbound SMTP connection.

E.	 This is an explicit statement of the default policy. All rulesets include this rule
implicitly as the last rule.

There are several problems with this ruleset. Rule D allows external traffic
to any destination port above 1023. As an example of an exploit of this rule, an
external attacker can open a connection from the attacker’s port 5150 to an internal
Web proxy server on port 8080. This is supposed to be forbidden and could allow an
attack on the server. To counter this attack, the firewall ruleset can be configured
with a source port field for each row. For rules B and D, the source port is set to 25;
for rules A and C, the source port is set to 7 1023.

But a vulnerability remains. Rules C and D are intended to specify that any
inside host can send mail to the outside. A TCP packet with a destination port of
25 is routed to the SMTP server on the destination machine. The problem with
this rule is that the use of port 25 for SMTP receipt is only a default; an outside
machine could be configured to have some other application linked to port 25. As
the revised rule D is written, an attacker could gain access to internal machines
by sending packets with a TCP source port number of 25. To counter this threat,
we can add an ACK flag field to each row. For rule D, the field would indicate
that the ACK flag must be set on the incoming packet. Rule D would now look
like this:

Rule Direction
Source

Address
Source

Port
Dest

Address Protocol
Dest
Port Flag Action

D In External 25 Internal TCP 7 1023 ACK Permit

The rule takes advantage of a feature of TCP connections. Once a connection
is set up, the ACK flag of a TCP segment is set to acknowledge segments sent from
the other side. Thus, this rule allows incoming packets with a source port number of
25 that include the ACK flag in the TCP segment.

Rule Direction
Source

Address
Destination

Address Protocol
Destination

Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP 7 1023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP 7 1023 Permit

E Either Any Any Any Any Deny

Table 12.1  Packet-Filtering Example

M12_STAL4855_06_GE_C12.indd 416 8/10/16 9:08 AM

12.3 / Types of Firewalls  417

One advantage of a packet filtering firewall is its simplicity. Also, packet filters
typically are transparent to users and are very fast. [SP 800-41-1] lists the following
weaknesses of packet filter firewalls:

■■ Because packet filter firewalls do not examine upper-layer data, they can-
not prevent attacks that employ application-specific vulnerabilities or func-
tions. For example, a packet filter firewall cannot block specific application
commands; if a packet filter firewall allows a given application, all functions
available within that application will be permitted.

■■ Because of the limited information available to the firewall, the logging func-
tionality present in packet filter firewalls is limited. Packet filter logs normally
contain the same information used to make access control decisions (source
address, destination address, and traffic type).

■■ Most packet filter firewalls do not support advanced user authentication
schemes. Once again, this limitation is mostly due to the lack of upper-layer
functionality by the firewall.

■■ Packet filter firewalls are generally vulnerable to attacks and exploits that
take advantage of problems within the TCP/IP specification and protocol
stack, such as network layer address spoofing. Many packet filter firewalls
cannot detect a network packet in which the OSI Layer 3 addressing informa-
tion has been altered. Spoofing attacks are generally employed by intruders
to bypass the security controls implemented in a firewall platform.

■■ Finally, due to the small number of variables used in access control decisions,
packet filter firewalls are susceptible to security breaches caused by improper
configurations. In other words, it is easy to accidentally configure a packet
filter firewall to allow traffic types, sources, and destinations that should be
denied based on an organization’s information security policy.

Some of the attacks that can be made on packet filtering firewalls and the
appropriate countermeasures are the following:

■■ IP address spoofing: The intruder transmits packets from the outside with a
source IP address field containing an address of an internal host. The attacker
hopes that the use of a spoofed address will allow penetration of systems that
employ simple source address security, in which packets from specific trusted
internal hosts are accepted. The countermeasure is to discard packets with an
inside source address if the packet arrives on an external interface. In fact, this
countermeasure is often implemented at the router external to the firewall.

■■ Source routing attacks: The source station specifies the route that a packet
should take as it crosses the Internet, in the hopes that this will bypass secu-
rity measures that do not analyze the source routing information. The coun-
termeasure is to discard all packets that use this option.

■■ Tiny fragment attacks: The intruder uses the IP fragmentation option to
create extremely small fragments and force the TCP header information
into a separate packet fragment. This attack is designed to circumvent fil-
tering rules that depend on TCP header information. Typically, a packet
filter will make a filtering decision on the first fragment of a packet. All

M12_STAL4855_06_GE_C12.indd 417 8/10/16 9:08 AM

418   chapter 12 / Firewalls

subsequent fragments of that packet are filtered out solely on the basis that
they are part of the packet whose first fragment was rejected. The attacker
hopes that the filtering firewall examines only the first fragment and that
the remaining fragments are passed through. A tiny fragment attack can be
defeated by enforcing a rule that the first fragment of a packet must contain
a predefined minimum amount of the transport header. If the first fragment
is rejected, the filter can remember the packet and discard all subsequent
fragments.

Stateful Inspection Firewalls

A traditional packet filter makes filtering decisions on an individual packet basis
and does not take into consideration any higher-layer context. To understand what
is meant by context and why a traditional packet filter is limited with regard to con-
text, a little background is needed. Most standardized applications that run on top
of TCP follow a client/server model. For example, for the Simple Mail Transfer
Protocol (SMTP), e-mail is transmitted from a client system to a server system.
The client system generates new e-mail messages, typically from user input. The
server system accepts incoming e-mail messages and places them in the appropri-
ate user mailboxes. SMTP operates by setting up a TCP connection between client
and server, in which the TCP server port number, which identifies the SMTP server
application, is 25. The TCP port number for the SMTP client is a number between
1024 and 65535 that is generated by the SMTP client.

In general, when an application that uses TCP creates a session with a remote
host, it creates a TCP connection in which the TCP port number for the remote
(server) application is a number less than 1024 and the TCP port number for the
local (client) application is a number between 1024 and 65535. The numbers less
than 1024 are the “well-known” port numbers and are assigned permanently to
particular applications (e.g., 25 for server SMTP). The numbers between 1024 and
65535 are generated dynamically and have temporary significance only for the life-
time of a TCP connection.

A simple packet filtering firewall must permit inbound network traffic on all
these high-numbered ports for TCP-based traffic to occur. This creates a vulnerabil-
ity that can be exploited by unauthorized users.

A stateful inspection packet firewall tightens up the rules for TCP traffic by
creating a directory of outbound TCP connections, as shown in Table 12.2. There is
an entry for each currently established connection. The packet filter will now allow
incoming traffic to high-numbered ports only for those packets that fit the profile of
one of the entries in this directory.

A stateful packet inspection firewall reviews the same packet information
as a packet filtering firewall, but also records information about TCP connections
(Figure 12.1c). Some stateful firewalls also keep track of TCP sequence numbers
to prevent attacks that depend on the sequence number, such as session hijack-
ing. Some even inspect limited amounts of application data for some well-known
protocols like FTP, IM and SIPS commands, in order to identify and track related
connections.

M12_STAL4855_06_GE_C12.indd 418 8/10/16 9:08 AM

12.3 / Types of Firewalls  419

Application-Level Gateway

An application-level gateway, also called an application proxy, acts as a relay of
application-level traffic (Figure 12.1d). The user contacts the gateway using a TCP/
IP application, such as Telnet or FTP, and the gateway asks the user for the name
of the remote host to be accessed. When the user responds and provides a valid
user ID and authentication information, the gateway contacts the application on
the remote host and relays TCP segments containing the application data between
the two endpoints. If the gateway does not implement the proxy code for a specific
application, the service is not supported and cannot be forwarded across the fire-
wall. Further, the gateway can be configured to support only specific features of an
application that the network administrator considers acceptable while denying all
other features.

Application-level gateways tend to be more secure than packet filters. Rather
than trying to deal with the numerous possible combinations that are to be allowed
and forbidden at the TCP and IP level, the application-level gateway need only
scrutinize a few allowable applications. In addition, it is easy to log and audit all
incoming traffic at the application level.

A prime disadvantage of this type of gateway is the additional processing
overhead on each connection. In effect, there are two spliced connections between
the end users, with the gateway at the splice point, and the gateway must examine
and forward all traffic in both directions.

Circuit-Level Gateway

A fourth type of firewall is the circuit-level gateway or circuit-level proxy
(Figure 12.1e). This can be a stand-alone system or it can be a specialized function
performed by an application-level gateway for certain applications. As with an

Source Address Source Port
Destination

Address Destination Port Connection State

192.168.1.100 1030 210.22.88.29 80 Established

192.168.1.102 1031 216.32.42.123 80 Established

192.168.1.101 1033 173.66.32.122 25 Established

192.168.1.106 1035 177.231.32.12 79 Established

223.43.21.231 1990 192.168.1.6 80 Established

2122.22.123.32 2112 192.168.1.6 80 Established

210.922.212.18 3321 192.168.1.6 80 Established

24.102.32.23 1025 192.168.1.6 80 Established

223.21.22.12 1046 192.168.1.6 80 Established

Table 12.2  Example Stateful Firewall Connection State Table (SP 800-41-1)

M12_STAL4855_06_GE_C12.indd 419 8/10/16 9:08 AM

420   chapter 12 / Firewalls

application gateway, a circuit-level gateway does not permit an end-to-end TCP
connection; rather, the gateway sets up two TCP connections, one between itself
and a TCP user on an inner host and one between itself and a TCP user on an out-
side host. Once the two connections are established, the gateway typically relays
TCP segments from one connection to the other without examining the contents.
The security function consists of determining which connections will be allowed.

A typical use of circuit-level gateways is a situation in which the system admin-
istrator trusts the internal users. The gateway can be configured to support appli-
cation-level or proxy service on inbound connections and circuit-level functions for
outbound connections. In this configuration, the gateway can incur the processing
overhead of examining incoming application data for forbidden functions but does
not incur that overhead on outgoing data.

An example of a circuit-level gateway implementation is the SOCKS package
[KOBL92]; version 5 of SOCKS is specified in RFC 1928. The SOCKS protocol pro-
vides a framework for client-server applications in both the TCP and UDP domains.
It is designed to provide convenient and secure access to a network-level firewall. The
protocol occupies a thin layer between the application and either TCP or UDP but
does not provide network-level routing services, such as forwarding of ICMP messages.

SOCKS consists of the following components:

■■ The SOCKS server, which often runs on a UNIX-based firewall. SOCKS is
also implemented on Windows systems.

■■ The SOCKS client library, which runs on internal hosts protected by the firewall.

■■ SOCKS-ified versions of several standard client programs such as FTP and
TELNET. The implementation of the SOCKS protocol typically involves
either the recompilation or relinking of TCP-based client applications or the
use of alternate dynamically loaded libraries, to use the appropriate encapsu-
lation routines in the SOCKS library.

When a TCP-based client wishes to establish a connection to an object that is
reachable only via a firewall (such determination is left up to the implementation),
it must open a TCP connection to the appropriate SOCKS port on the SOCKS
server system. The SOCKS service is located on TCP port 1080. If the connection
request succeeds, the client enters a negotiation for the authentication method to
be used, authenticates with the chosen method, and then sends a relay request. The
SOCKS server evaluates the request and either establishes the appropriate connec-
tion or denies it. UDP exchanges are handled in a similar fashion. In essence, a TCP
connection is opened to authenticate a user to send and receive UDP segments, and
the UDP segments are forwarded as long as the TCP connection is open.

	 12.4	Firewall Basing

It is common to base a firewall on a stand-alone machine running a common operat-
ing system, such as UNIX or Linux. Firewall functionality can also be implemented
as a software module in a router or LAN switch. In this section, we look at some
additional firewall basing considerations.

M12_STAL4855_06_GE_C12.indd 420 8/10/16 9:08 AM

12.4 / Firewall Basing  421

Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong
point in the network’s security. Typically, the bastion host serves as a platform for
an application-level or circuit-level gateway. Common characteristics of a bastion
host are as follows:

■■ The bastion host hardware platform executes a secure version of its operating
system, making it a hardened system.

■■ Only the services that the network administrator considers essential are
installed on the bastion host. These could include proxy applications for DNS,
FTP, HTTP, and SMTP.

■■ The bastion host may require additional authentication before a user is
allowed access to the proxy services. In addition, each proxy service may
require its own authentication before granting user access.

■■ Each proxy is configured to support only a subset of the standard applica-
tion’s command set.

■■ Each proxy is configured to allow access only to specific host systems. This
means that the limited command/feature set may be applied only to a subset
of systems on the protected network.

■■ Each proxy maintains detailed audit information by logging all traffic, each
connection, and the duration of each connection. The audit log is an essential
tool for discovering and terminating intruder attacks.

■■ Each proxy module is a very small software package specifically designed for
network security. Because of its relative simplicity, it is easier to check such
modules for security flaws. For example, a typical UNIX mail application may
contain over 20,000 lines of code, while a mail proxy may contain fewer than
1000.

■■ Each proxy is independent of other proxies on the bastion host. If there is a
problem with the operation of any proxy, or if a future vulnerability is discov-
ered, it can be uninstalled without affecting the operation of the other proxy
applications. Also, if the user population requires support for a new service,
the network administrator can easily install the required proxy on the bastion
host.

■■ A proxy generally performs no disk access other than to read its initial con-
figuration file. Hence, the portions of the file system containing executable
code can be made read only. This makes it difficult for an intruder to install
Trojan horse sniffers or other dangerous files on the bastion host.

■■ Each proxy runs as a nonprivileged user in a private and secured directory on
the bastion host.

Host-Based Firewalls

A host-based firewall is a software module used to secure an individual host. Such
modules are available in many operating systems or can be provided as an add-
on package. Like conventional stand-alone firewalls, host-resident firewalls filter

M12_STAL4855_06_GE_C12.indd 421 8/10/16 9:08 AM

422   chapter 12 / Firewalls

and restrict the flow of packets. A common location for such firewalls is a server.
There are several advantages to the use of a server-based or workstation-based
firewall:

■■ Filtering rules can be tailored to the host environment. Specific corporate
security policies for servers can be implemented, with different filters for
servers used for different application.

■■ Protection is provided independent of topology. Thus both internal and exter-
nal attacks must pass through the firewall.

■■ Used in conjunction with stand-alone firewalls, the host-based firewall pro-
vides an additional layer of protection. A new type of server can be added to
the network, with its own firewall, without the necessity of altering the net-
work firewall configuration.

Personal Firewall

A personal firewall controls the traffic between a personal computer or workstation
on one side and the Internet or enterprise network on the other side. Personal fire-
wall functionality can be used in the home environment and on corporate intranets.
Typically, the personal firewall is a software module on the personal computer. In
a home environment with multiple computers connected to the Internet, firewall
functionality can also be housed in a router that connects all of the home computers
to a DSL, cable modem, or other Internet interface.

Personal firewalls are typically much less complex than either server-based
firewalls or stand-alone firewalls. The primary role of the personal firewall is to
deny unauthorized remote access to the computer. The firewall can also monitor
outgoing activity in an attempt to detect and block worms and other malware.

Personal firewall capabilities are provided by the netfilter package on Linux
systems, or the pf package on BSD and Mac OS X systems. These packages may be
configured on the command-line, or with a GUI front-end. When such a personal
firewall is enabled, all inbound connections are usually denied except for those
the user explicitly permits. Outbound connections are usually allowed. The list of
inbound services that can be selectively re-enabled, with their port numbers, may
include the following common services:

■■ Personal file sharing (548, 427)

■■ Windows sharing (139)

■■ Personal Web sharing (80, 427)

■■ Remote login—SSH (22)

■■ FTP access (20–21, 1024-65535 from 20–21)

■■ Printer sharing (631, 515)

■■ iChat Rendezvous (5297, 5298)

■■ iTunes Music Sharing (3869)

■■ CVS (2401)

■■ Gnutella/Limewire (6346)

M12_STAL4855_06_GE_C12.indd 422 8/10/16 9:08 AM

12.5 / Firewall Location and Configurations  423

■■ ICQ (4000)

■■ IRC (194)

■■ MSN Messenger (6891–6900)

■■ Network Time (123)

■■ Retrospect (497)

■■ SMB (without netbios; 445)

■■ Timbuktu (407)

■■ VNC (5900–5902)

■■ WebSTAR Admin (1080, 1443)

When FTP access is enabled, ports 20 and 21 on the local machine are opened
for FTP; if others connect this computer from ports 20 or 21, the ports 1024 through
65535 are open.

For increased protection, advanced firewall features may be configured. For
example, stealth mode hides the system on the Internet by dropping unsolicited
communication packets, making it appear as though the system is not present.
UDP packets can be blocked, restricting network traffic to TCP packets only for
open ports. The firewall also supports logging, an important tool for checking on
unwanted activity. Other types of personal firewall allow the user to specify that
only selected applications, or applications signed by a valid certificate authority,
may provide services accessed from the network.

	 12.5	Firewall Location and Configurations

As Figure 12.1a indicates, a firewall is positioned to provide a protective barrier
between an external, potentially untrusted source of traffic and an internal network.
With that general principle in mind, a security administrator must decide on the
location and on the number of firewalls needed. In this section, we look at some
common options.

DMZ Networks

Figure 12.2 suggests the most common distinction, that between an internal and an
external firewall. An external firewall is placed at the edge of a local or enterprise
network, just inside the boundary router that connects to the Internet or some wide
area network (WAN). One or more internal firewalls protect the bulk of the enter-
prise network. Between these two types of firewalls are one or more networked
devices in a region referred to as a DMZ (demilitarized zone) network. Systems
that are externally accessible but need some protections are usually located on
DMZ networks. Typically, the systems in the DMZ require or foster external con-
nectivity, such as a corporate Web site, an e-mail server, or a DNS (domain name
system) server.

The external firewall provides a measure of access control and protection for
the DMZ systems consistent with their need for external connectivity. The external

M12_STAL4855_06_GE_C12.indd 423 8/10/16 9:08 AM

424   chapter 12 / Firewalls

firewall also provides a basic level of protection for the remainder of the enterprise
network. In this type of configuration, internal firewalls serve three purposes:

1.	 The internal firewall adds more stringent filtering capability, compared to the
external firewall, in order to protect enterprise servers and workstations from
external attack.

2.	 The internal firewall provides two-way protection with respect to the DMZ.
First, the internal firewall protects the remainder of the network from attacks
launched from DMZ systems. Such attacks might originate from worms, root-
kits, bots, or other malware lodged in a DMZ system. Second, an internal fire-
wall can protect the DMZ systems from attack from the internal protected
network.

Figure 12.2  Example Firewall Configuration

Workstations

Application and database servers

Web
server(s)

E-mail
server

Internal DMZ network

Boundary
router

External
�rewall

LAN
switch

LAN
switch

Internal
�rewall

Internal protected network

DNS
server

InternetRemote
users

M12_STAL4855_06_GE_C12.indd 424 8/10/16 9:08 AM

12.5 / Firewall Location and Configurations  425

3.	 Multiple internal firewalls can be used to protect portions of the internal net-
work from each other. For example, firewalls can be configured so that internal
servers are protected from internal workstations and vice versa. A common
practice is to place the DMZ on a different network interface on the external
firewall from that used to access the internal networks.

Virtual Private Networks

In today’s distributed computing environment, the virtual private network (VPN)
offers an attractive solution to network managers. In essence, a VPN consists of a
set of computers that interconnect by means of a relatively unsecure network and
that make use of encryption and special protocols to provide security. At each cor-
porate site, workstations, servers, and databases are linked by one or more local
area networks (LANs). The Internet or some other public network can be used to
interconnect sites, providing a cost savings over the use of a private network and
offloading the wide area network management task to the public network provider.
That same public network provides an access path for telecommuters and other mo-
bile employees to log on to corporate systems from remote sites.

But the manager faces a fundamental requirement: security. Use of a public
network exposes corporate traffic to eavesdropping and provides an entry point for
unauthorized users. To counter this problem, a VPN is needed. In essence, a VPN
uses encryption and authentication in the lower protocol layers to provide a secure
connection through an otherwise insecure network, typically the Internet. VPNs are
generally cheaper than real private networks using private lines but rely on having
the same encryption and authentication system at both ends. The encryption may
be performed by firewall software or possibly by routers. The most common proto-
col mechanism used for this purpose is at the IP level and is known as IPsec.

Figure 12.3 (Compare Figure 9.1) is a typical scenario of IPSec usage.1 An
organization maintains LANs at dispersed locations. Nonsecure IP traffic is con-
ducted on each LAN. For traffic off site, through some sort of private or public
WAN, IPSec protocols are used. These protocols operate in networking devices,
such as a router or firewall, that connect each LAN to the outside world. The IPSec
networking device will typically encrypt and compress all traffic going into the
WAN and decrypt and uncompress traffic coming from the WAN; authentication
may also be provided. These operations are transparent to workstations and servers
on the LAN. Secure transmission is also possible with individual users who dial into
the WAN. Such user workstations must implement the IPSec protocols to provide
security. They must also implement high levels of host security, as they are directly
connected to the wider Internet. This makes them an attractive target for attackers
attempting to access the corporate network.

A logical means of implementing an IPSec is in a firewall, as shown in
Figure 12.3. If IPSec is implemented in a separate box behind (internal to) the fire-
wall, then VPN traffic passing through the firewall in both directions is encrypted.
In this case, the firewall is unable to perform its filtering function or other security

1Details of IPSec are provided in Chapter 9. For this discussion, all that we need to know is that IPSec
adds one or more additional headers to the IP packet to support encryption and authentication functions.

M12_STAL4855_06_GE_C12.indd 425 8/10/16 9:08 AM

426   chapter 12 / Firewalls

functions, such as access control, logging, or scanning for viruses. IPSec could be
implemented in the boundary router, outside the firewall. However, this device is
likely to be less secure than the firewall and thus less desirable as an IPSec platform.

Distributed Firewalls

A distributed firewall configuration involves stand-alone firewall devices plus host-
based firewalls working together under a central administrative control. Figure 12.4
suggests a distributed firewall configuration. Administrators can configure host-
resident firewalls on hundreds of servers and workstations as well as configure per-
sonal firewalls on local and remote user systems. Tools let the network adminis-
trator set policies and monitor security across the entire network. These firewalls
protect against internal attacks and provide protection tailored to specific machines
and applications. Stand-alone firewalls provide global protection, including internal
firewalls and an external firewall, as discussed previously.

With distributed firewalls, it may make sense to establish both an internal and an
external DMZ. Web servers that need less protection because they have less critical
information on them could be placed in an external DMZ, outside the external fire-
wall. What protection is needed is provided by host-based firewalls on these servers.

An important aspect of a distributed firewall configuration is security moni-
toring. Such monitoring typically includes log aggregation and analysis, firewall sta-
tistics, and fine-grained remote monitoring of individual hosts if needed.

Figure 12.3  A VPN Security Scenario

IP
header

IP
payload

IP
header

IPSec
header

Secure IP
payload

IPheader IPSec

header

Secure IP

payloadIP
he

ad
er

IP
Sec

he
ad

er
Sec

ur
e I

P
pa

ylo
ad

IP
header

IP
payload

Firewall
with IPSec

Ethernet
switch

Ethernet
switch

User system
with IPSec

Firewall
with IPSec

Public (Internet)
or private
network

M12_STAL4855_06_GE_C12.indd 426 8/10/16 9:08 AM

12.5 / Firewall Location and Configurations  427

Summary of Firewall Locations and Topologies

We can now summarize the discussion from Sections 12.4 and 12.5 to define a
spectrum of firewall locations and topologies. The following alternatives can be
identified:

■■ Host-resident firewall: This category includes personal firewall software and
firewall software on servers. Such firewalls can be used alone or as part of an
in-depth firewall deployment.

Figure 12.4  Example Distributed Firewall Configuration

Workstations

Application and database servers

Web
server(s)

E-mail
server

Internal DMZ network

Boundary
router

External
�rewall

LAN
switch

LAN
switch

host-resident
�rewall

Internal
�rewall

Internal protected network

DNS
server

Internet

Web
server(s)

External
DMZ network

Remote
users

M12_STAL4855_06_GE_C12.indd 427 8/10/16 9:08 AM

428   chapter 12 / Firewalls

■■ Screening router: A single router between internal and external networks
with stateless or full packet filtering. This arrangement is typical for small
office/home office (SOHO) applications.

■■ Single bastion inline: A single firewall device between an internal and exter-
nal router (e.g., Figure 12.1a). The firewall may implement stateful filters and/
or application proxies. This is the typical firewall appliance configuration for
small- to medium-sized organizations.

■■ Single bastion T: Similar to single bastion inline but has a third network inter-
face on bastion to a DMZ where externally visible servers are placed. Again,
this is a common appliance configuration for medium to large organizations.

■■ Double bastion inline: Figure 12.2 illustrates this configuration, where the
DMZ is sandwiched between bastion firewalls. This configuration is common
for large businesses and government organizations.

■■ Double bastion T: The DMZ is on a separate network interface on the bas-
tion firewall. This configuration is also common for large businesses and
government organizations and may be required. For example, this configu-
ration is required for Australian government use (Australian Government
Information Technology Security Manual—ACSI33).

■■ Distributed firewall configuration: Illustrated in Figure 12.4. This configura-
tion is used by some large businesses and government organizations.

	 12.6	Key Terms, Review Questions, and Problems

Key Terms

application-level gateway
bastion host
circuit-level gateway
distributed firewalls
DMZ

firewall
host-based firewall
IP address spoofing
IP security (IPSec)
packet filtering firewall

personal firewall
proxy
stateful inspection firewall
tiny fragment attack
virtual private network (VPN)

Review Questions

	 12.1	 List three design goals for a firewall.
	 12.2	 List four techniques used by firewalls to control access and enforce a security policy.
	 12.3	 When does a packet filtering firewall resort to default actions? List these default

policies.
	 12.4	 What are some weaknesses of a packet filtering firewall?
	 12.5	 Explain three attacks that can be made on packet filtering firewalls. What measures

can be taken to counter these attacks?
	 12.6	 What is an application-level gateway?
	 12.7	 What is a circuit-level gateway?
	 12.8	 What are the differences among the firewalls of Figure 12.1?
	 12.9	 What are the common characteristics of a bastion host?

M12_STAL4855_06_GE_C12.indd 428 8/10/16 9:08 AM

12.6 / Key Terms, Review Questions, and Problems  429

	 12.10	 Why is it useful to have host-based firewalls?
	 12.11	 What is a virtual private network? How does it ensure a secure connection?
	 12.12	 Describe the spectrum of firewall locations and topologies.

Problems

	 12.1	 As was mentioned in Section 12.3, one approach to defeating the tiny fragment attack
is to enforce a minimum length of the transport header that must be contained in the
first fragment of an IP packet. If the first fragment is rejected, all subsequent frag-
ments can be rejected. However, the nature of IP is such that fragments may arrive
out of order. Thus, an intermediate fragment may pass through the filter before the
initial fragment is rejected. How can this situation be handled?

	 12.2	 In an IPv4 packet, the size of the payload in the first fragment, in octets, is equal to
Total Length - (4 * IHL). If this value is less than the required minimum (8 octets
for TCP), then this fragment and the entire packet are rejected. Suggest an alterna-
tive method of achieving the same result using only the Fragment Offset field.

	 12.3	 RFC 791, the IPv4 protocol specification, describes a reassembly algorithm that
results in new fragments overwriting any overlapped portions of previously received
fragments. Given such a reassembly implementation, an attacker could construct a
series of packets in which the lowest (zero-offset) fragment would contain innocu-
ous data (and thereby be passed by administrative packet filters), and in which some
subsequent packet having a non-zero offset would overlap TCP header informa-
tion (destination port, for instance) and cause it to be modified. The second packet
would be passed through most filter implementations because it does not have a zero
fragment offset. Suggest a method that could be used by a packet filter to counter
this attack.

	 12.4	 Table 12.3 shows a sample of a packet filter firewall ruleset for an imaginary network
of IP address that range from 192.168.1.0 to 192.168.1.254. Describe the effect of each
rule.

	 12.5	 SMTP (Simple Mail Transfer Protocol) is the standard protocol for transferring mail
between hosts over TCP. A TCP connection is set up between a user agent and a
server program. The server listens on TCP port 25 for incoming connection requests.
The user end of the connection is on a TCP port number above 1023. Suppose you
wish to build a packet filter ruleset allowing inbound and outbound SMTP traffic.
You generate the following ruleset:

Source Address Source Port Dest Address Dest Port Action

1 Any Any 192.168.1.0 7 1023 Allow

2 192.168.1.1 Any Any Any Deny

3 Any Any 192.168.1.1 Any Deny

4 192.168.1.0 Any Any Any Allow

5 Any Any 192.168.1.2 SMTP Allow

6 Any Any 192.168.1.3 HTTP Allow

7 Any Any Any Any Deny

Table 12.3  Sample Packet Filter Firewall Ruleset

M12_STAL4855_06_GE_C12.indd 429 8/10/16 9:08 AM

430   chapter 12 / Firewalls

Rule Direction Src Addr Dest Addr Protocol Dest Port Action

A In External Internal TCP 25 Permit

B Out Internal External TCP 71023 Permit

C Out Internal External TCP 25 Permit

D In External Internal TCP 71023 Permit

E Either Any Any Any Any Deny

a.	 Describe the effect of each rule.
b.	 Your host in this example has IP address 172.16.1.1. Someone tries to send e-mail

from a remote host with IP address 192.168.3.4. If successful, this generates an
SMTP dialogue between the remote user and the SMTP server on your host con-
sisting of SMTP commands and mail. Additionally, assume that a user on your host
tries to send e-mail to the SMTP server on the remote system. Four typical packets
for this scenario are as shown:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

1 In 192.168.3.4 172.16.1.1 TCP 25 ?

2 Out 172.16.1.1 192.168.3.4 TCP 1234 ?

3 Out 172.16.1.1 192.168.3.4 TCP 25 ?

4 In 192.168.3.4 172.16.1.1 TCP 1357 ?

Indicate which packets are permitted or denied and which rule is used in each case.
c.	 Someone from the outside world (10.1.2.3) attempts to open a connection from

port 5150 on a remote host to the Web proxy server on port 8080 on one of your
local hosts (172.16.3.4), in order to carry out an attack. Typical packets are as
follows:

Packet Direction Src Addr Dest Addr Protocol Dest Port Action

5 In 10.1.2.3 172.16.3.4 TCP 8080 ?

6 Out 172.16.3.4 10.1.2.3 TCP 5150 ?

Will the attack succeed? Give details.
	 12.6	 To provide more protection, the ruleset from the preceding problem is modified as

follows:

Rule Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

A In External Internal TCP 71023 25 Permit

B Out Internal External TCP 25 71023 Permit

C Out Internal External TCP 71023 25 Permit

D In External Internal TCP 25 71023 Permit

E Either Any Any Any Any Any Deny

a.	 Describe the change.
b.	 Apply this new ruleset to the same six packets of the preceding problem. Indicate

which packets are permitted or denied and which rule is used in each case.

M12_STAL4855_06_GE_C12.indd 430 8/10/16 9:08 AM

12.6 / Key Terms, Review Questions, and Problems  431

	 12.7	 A hacker uses port 25 as the client port on his or her end to attempt to open a connec-
tion to your Web proxy server.
a.	 The following packets might be generated:

Packet Direction Src Addr Dest Addr Protocol Src Port Dest Port Action

7 In 10.1.2.3 172.16.3.4 TCP 25 8080 ?

8 Out 172.16.3.4 10.1.2.3 TCP 8080 25 ?

Explain why this attack will succeed, using the ruleset of the preceding problem.
b.	 When a TCP connection is initiated, the ACK bit in the TCP header is not set.

Subsequently, all TCP headers sent over the TCP connection have the ACK bit set.
Use this information to modify the ruleset of the preceding problem to prevent
the attack just described.

	 12.8	 A common management requirement is that “all external Web traffic must flow
via the organization’s Web proxy.” However, that requirement is easier stated than
implemented. Discuss the various problems and issues, possible solutions, and limita-
tions with supporting this requirement. In particular consider issues such as identify-
ing exactly what constitutes “Web traffic” and how it may be monitored, given the
large range of ports and various protocols used by Web browsers and servers.

	 12.9	 Consider the threat of “theft/breach of proprietary or confidential information held
in key data files on the system.” One method by which such a breach might occur is
the accidental/deliberate e-mailing of information to a user outside of the organiza-
tion. A possible countermeasure to this is to require all external e-mail to be given a
sensitivity tag (classification if you like) in its subject and for external e-mail to have
the lowest sensitivity tag. Discuss how this measure could be implemented in a fire-
wall and what components and architecture would be needed to do this.

	 12.10	 You are given the following “informal firewall policy” details to be implemented
using a firewall like that in Figure 12.2:
1.	 E-mail may be sent using SMTP in both directions through the firewall, but it must

be relayed via the DMZ mail gateway that provides header sanitization and con-
tent filtering. External e-mail must be destined for the DMZ mail server.

2.	 Users inside may retrieve their e-mail from the DMZ mail gateway, using either
POP3 or POP3S, and authenticate themselves.

3.	 Users outside may retrieve their e-mail from the DMZ mail gateway, but only if
they use the secure POP3 protocol, and authenticate themselves.

4.	 Web requests (both insecure and secure) are allowed from any internal user out
through the firewall but must be relayed via the DMZ Web proxy, which provides
content filtering (noting this is not possible for secure requests), and users must
authenticate with the proxy for logging.

5.	 Web requests (both insecure and secure) are allowed from anywhere on the
Internet to the DMZ Web server.

6.	 DNS lookup requests by internal users allowed via the DMZ DNS server, which
queries to the Internet.

7.	 External DNS requests are provided by the DMZ DNS server.
8.	 Management and update of information on the DMZ servers is allowed using

secure shell connections from relevant authorized internal users (may have dif-
ferent sets of users on each system as appropriate).

9.	 SNMP management requests are permitted from the internal management hosts
to the firewalls, with the firewalls also allowed to send management traps (i.e.,
notification of some event occurring) to the management hosts.

Design suitable packet filter rulesets (similar to those shown in Table 12.1) to be
implemented on the “External Firewall” and the “Internal Firewall” to satisfy the
aforementioned policy requirements.

M12_STAL4855_06_GE_C12.indd 431 8/10/16 9:08 AM

432432

Appendix A

Some Aspects of Number Theory
A.1	 Prime and Relatively Prime Numbers

Divisors
Prime Numbers
Relatively Prime Numbers

A.2	 Modular Arithmetic

Z01_STAL4855_06_GE_APPA.indd 432 8/10/16 9:19 AM

A.1 / Prime and Relatively Prime Numbers  433

In this appendix, we provide some background on two concepts referenced in this
book: prime numbers and modular arithmetic.

	 A.1	 Prime and Relatively Prime Numbers

In this section, unless otherwise noted, we deal only with nonnegative integers. The
use of negative integers would introduce no essential differences.

Divisors

We say that b ≠ 0 divides a if a = mb for some m, where a, b, and m are integers.
That is, b divides a if there is no remainder on division. The notation b � a is com-
monly used to mean b divides a. Also, if b � a, we say that b is a divisor of a. For
example, the positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

The following relations hold:

■■ If a � 1, then a = {1

■■ If a �b and b � a, then a = {b

■■ Any b ≠ 0 divides 0

■■ If b � g and b �h, then b � (mg + nh) for arbitrary integers m and n

To see this last point, note that

If b � g, then g is of the form g = b * g1 for some integer g1.

If b �h, then h is of the form h = b * h1 for some integer h1.

So

mg + nh = mbg1 + nbh1 = b * (mg1 + nh1)

and therefore b divides mg + nh.

Prime Numbers

An integer p 7 1 is a prime number if its only divisors are {1 and {p. Prime
numbers play a critical role in number theory and in the techniques discussed in
Chapter 3.

Any integer a 7 1 can be factored in a unique way as

a = p1
a1 * p2

a2 * c * pt
at

where p1 6 p2 6 c 6 pt are prime numbers and where each ai is a positive inte-
ger. For example, 91 = 7 * 13 and 11011 = 7 * 112 * 13.

It is useful to cast this another way. If P is the set of all prime numbers, then
any positive integer can be written uniquely in the following form:

a = q
p∈P

pap where each ap Ú 0

The right-hand side is the product over all possible prime numbers p; for any par-
ticular value of a, most of the exponents ap will be 0.

Z01_STAL4855_06_GE_APPA.indd 433 8/10/16 9:19 AM

434   Appendix A / Some Aspects of Number Theory

The value of any given positive integer can be specified by simply listing all
the nonzero exponents in the foregoing formulation. Thus, the integer 12 is repre-
sented by {a2 = 2, a3 = 1}, and the integer 18 is represented by {a2 = 1, a3 = 2}.
Multiplication of two numbers is equivalent to adding the corresponding exponents:

k = mn S kp = mp + np for all p

What does it mean, in terms of these prime factors, to say that a �b? Any inte-
ger of the form pk can be divided only by an integer that is of a lesser or equal power
of the same prime number, pj with j … k. Thus, we can say

a �b S ap … bp for all p

Relatively Prime Numbers

We will use the notation gcd(a, b) to mean the greatest common divisor of a and b.
The positive integer c is said to be the greatest common divisor of a and b if

1.	 c is a divisor of a and of b.

2.	 Any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k � a and k �b]

Because we require that the greatest common divisor be positive, gcd(a, b)
= gcd(a, -b) = gcd(-a, b) = gcd(-a, -b). In general, gcd(a, b) = gcd(� a � , �b �).
For example, gcd(60, 24) = gcd(60, -24) = 12. Also, because all nonzero integers
divide 0, we have gcd(a, 0) = � a � .

It is easy to determine the greatest common divisor of two positive integers if
we express each integer as the product of primes. For example,

 300 = 22 * 31 * 52

 18 = 21 * 32

 gcd(18, 300) = 21 * 31 * 50 = 6

In general,

k = gcd(a, b) S kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the pre-
ceding relationship does not directly lead to a way of calculating the greatest com-
mon divisor.

The integers a and b are relatively prime if they have no prime factors in com-
mon, that is, if their only common factor is 1. This is equivalent to saying that a and
b are relatively prime if gcd(a, b) = 1. For example, 8 and 15 are relatively prime
because the divisors of 8 are 1, 2, 4, and 8, and the divisors of 15 are 1, 3, 5, and 15,
so 1 is the only number on both lists.

Z01_STAL4855_06_GE_APPA.indd 434 8/10/16 9:19 AM

A.2 / Modular Arithmetic  435

	 A.2	M odular Arithmetic

Given any positive integer n and any nonnegative integer a, if we divide a by n,
we get an integer quotient q and an integer remainder r that obey the following
relationship:

a = qn + r 0 … r 6 n; q = :a/n;
where :x; is the largest integer less than or equal to x.

Figure A.1 a demonstrates that, given a and positive n, it is always possible to
find q and r that satisfy the preceding relationship. Represent the integers on the
number line; a will fall somewhere on that line (positive a is shown, a similar dem-
onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to qn such
that qn … a and (q + 1)n 7 a. The distance from qn to a is r, and we have found
the unique values of q and r. The remainder r is often referred to as a residue.

If a is an integer and n is a positive integer, we define a mod n to be the re-
mainder when a is divided by n. Thus, for any integer a, we can always write:

a = :a/n; * n + (a mod n)

Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n).
This is written a K b mod n. For example, 73 K 4 mod 23 and 21 K -9 mod 10.
Note that if a K 0 mod n, then n � a.

The modulo operator has the following properties:

1.	 a K b mod n if n � (a - b)

2.	 (a mod n) = (b mod n) implies a K b mod n

0

n 2n 3n qn (q + 1)na

n

r(a) General relationship

0 15

15

10

30
= 2 15

70

(b) Example: 70 = (4 15) + 10

45
= 3 15

60
= 4 15

75
= 5 15

Figure A.1  The Relationship a = qn + r; 0 … r 6 n

Z01_STAL4855_06_GE_APPA.indd 435 8/10/16 9:19 AM

436   Appendix A / Some Aspects of Number Theory

3.	 a K b mod n implies b K a mod n.

4.	 a K b mod n and b K c mod n imply a K c mod n.

To demonstrate the first point, if n � (a - b), then (a - b) = kn for some k.
So we can write a = b + kn. Therefore, (a mod n) = (remainder when b + kn
is divided by n) = (remainder when b is divided by n) = (b mod n). The remaining
points are as easily proved.

The (mod n) operator maps all integers into the set of integers
{0, 1, c , (n - 1)}. This suggests the question: Can we perform arithmetic opera-
tions within the confines of this set? It turns out that we can; the technique is known
as modular arithmetic.

Modular arithmetic exhibits the following properties:

1.	 [(a mod n) + (b mod n)] mod n = (a + b) mod n

2.	 [(a mod n) - (b mod n)] mod n = (a - b) mod n

3.	 [(a mod n) * (b mod n)] mod n = (a * b) mod n

We demonstrate the first property. Define (a mod n) = ra and (b mod n) = rb.
Then we can write a = ra + jn for some integer j and b = rb + kn for some integer
k. Then

 (a + b) mod n = (ra + jn + rb + kn) mod n

 = (ra + rb + (k + j)n) mod n

 = (ra + rb) mod n

 = [(a mod n) + (b mod n)] mod n

The remaining properties are as easily proved.

Z01_STAL4855_06_GE_APPA.indd 436 8/10/16 9:19 AM

437

Appendix B

Projects for Teaching Network Security
B.1	 Research Projects

B.2	 Hacking Project

B.3	 Programming Projects

B.4	 Laboratory Exercises

B.5	 Practical Security Assessments

B.6	 Firewall Projects

B.7	 Case Studies

B.8	 Writing Assignments

B.9	 Reading/Report Assignments

Z02_STAL4855_06_GE_APPB.indd 437 8/10/16 9:21 AM

438   Appendix B / Projects for Teaching Network Security

Many instructors believe that research or implementation projects are crucial to the
clear understanding of network security. Without projects, it may be difficult for
students to grasp some of the basic concepts and interactions among components.
Projects reinforce the concepts introduced in the book, give the student a greater
appreciation of how a cryptographic algorithm or protocol works, and can motivate
students and give them confidence that they are capable of not only understanding
but implementing the details of a security capability.

In this text, I have tried to present the concepts of network security as clearly
as possible and have provided numerous homework problems to reinforce those
concepts. However, many instructors will wish to supplement this material with
projects. This appendix provides some guidance in that regard and describes sup-
port material available in the Instructor’s Resource Center (IRC) for this book,
accessible to instructors from Pearson Education. The support material covers nine
types of projects:

1.	 Research projects
2.	 Hacking project
3.	 Programming projects
4.	 Laboratory exercises
5.	 Practical security assessments
6.	 Firewall projects
7.	 Case studies
8.	 Writing assignments
9.	 Reading/report assignments

	 B.1	 Research Projects

An effective way of reinforcing basic concepts from the course and for teaching
students research skills is to assign a research project. Such a project could involve
a literature search as well as an Internet search of vendor products, research lab
activities, and standardization efforts. Projects could be assigned to teams or, for
smaller projects, to individuals. In any case, it is best to require some sort of project
proposal early in the term, giving the instructor time to evaluate the proposal for
appropriate topic and appropriate level of effort. Student handouts for research
projects should include the following:

■■ A format for the proposal

■■ A format for the final report

■■ A schedule with intermediate and final deadlines

■■ A list of possible project topics

The students can select one of the topics listed in the instructor’s manual or
devise their own comparable project. The IRC includes a suggested format for the
proposal and final report as well as a list of fifteen possible research topics.

Z02_STAL4855_06_GE_APPB.indd 438 8/10/16 9:21 AM

B.3 / Programming Projects  439

	 B.2	H acking Project

The aim of this project is to hack into a corporation’s network through a series of
steps. The Corporation is named Extreme In Security Corporation. As the name
indicates, the corporation has some security holes in it, and a clever hacker is able
to access critical information by hacking into its network. The IRC includes what is
needed to set up the Web site. The student’s goal is to capture the secret informa-
tion about the price on the quote the corporation is placing next week to obtain a
contract for a governmental project.

The student should start at the Web site and find his or her way into the net-
work. At each step, if the student succeeds, there are indications as to how to pro-
ceed on to the next step as well as the grade until that point.

The project can be attempted in three ways:

1.	 Without seeking any sort of help

2.	 Using some provided hints

3.	 Using exact directions

The IRC includes the files needed for this project:

1.	 Web Security project

2.	 Web Hacking exercises (XSS and Script-attacks) covering client-side and
server-side vulnerability exploitations, respectively

3.	 Documentation for installation and use for the above

4.	 A PowerPoint file describing Web hacking. This file is crucial to understanding
how to use the exercises since it clearly explains the operation using screen
shots.

This project was designed and implemented by Professor Sreekanth Malladi
of Dakota State University.

	 B.3	 Programming Projects

The programming project is a useful pedagogical tool. There are several attractive
features of stand-alone programming projects that are not part of an existing secu-
rity facility.

1.	 The instructor can choose from a wide variety of cryptography and network
security concepts to assign projects.

2.	 The projects can be programmed by the students on any available computer
and in any appropriate language; they are platform and language independent.

3.	 The instructor need not download, install, and configure any particular infra-
structure for stand-alone projects.

Z02_STAL4855_06_GE_APPB.indd 439 8/10/16 9:21 AM

440   Appendix B / Projects for Teaching Network Security

There is also flexibility in the size of projects. Larger projects give students more
sense of achievement, but students with less ability or fewer organizational skills can
be left behind. Larger projects usually elicit more overall effort from the best stu-
dents. Smaller projects can have a higher concepts-to-code ratio, and because more
of them can be assigned, the opportunity exists to address a variety of different areas.

Again, as with research projects, the students should first submit a proposal.
The student handout should include the same elements listed in Section B.1. The
IRC includes a set of twelve possible programming projects.

The following individuals have supplied the research and programming
projects suggested in the instructor’s manual: Henning Schulzrinne of Columbia
University; Cetin Kaya Koc of Oregon State University; and David M. Balenson of
Trusted Information Systems and George Washington University.

	 B.4	 Laboratory Exercises

Professor Sanjay Rao and Ruben Torres of Purdue University have prepared a set
of laboratory exercises that are part of the IRC. These are implementation projects
designed to be programmed on Linux but could be adapted for any Unix environ-
ment. These laboratory exercises provide realistic experience in implementing secu-
rity functions and applications.

	 B.5	 Practical Security Assessments

Examining the current infrastructure and practices of an existing organization is
one of the best ways of developing skills in assessing its security posture. The IRC
contains a list of such activities. Students, working either individually or in small
groups, select a suitable small-to-medium-sized organization. They then interview
some key personnel in that organization in order to conduct a suitable selection
of security risk assessment and review tasks as it relates to the organization’s IT
infrastructure and practices. As a result, they can then recommend suitable changes,
which can improve the organization’s IT security. These activities help students de-
velop an appreciation of current security practices and the skills needed to review
these and recommend changes.

Lawrie Brown of the Australian Defence Force Academy developed these
projects.

	 B.6	 Firewall Projects

The implementation of network firewalls can be a difficult concept for students to
grasp initially. The IRC includes a Network Firewall Visualization tool to convey
and teach network security and firewall configuration. This tool is intended to teach
and reinforce key concepts including the use and purpose of a perimeter firewall,
the use of separated subnets, the purposes behind packet filtering, and the short-
comings of a simple packet filter firewall.

Z02_STAL4855_06_GE_APPB.indd 440 8/10/16 9:21 AM

B.9 / Reading/Report Assignments  441

The IRC includes a .jar file that is fully portable and a series of exercises. The
tool and exercises were developed at U.S. Air Force Academy.

	 B.7	C ase Studies

Teaching with case studies engages students in active learning. The IRC includes
case studies in the following areas:

■■ Disaster recovery

■■ Firewalls

■■ Incidence response

■■ Physical security

■■ Risk

■■ Security policy

■■ Virtualization

Each case study includes learning objectives, case description, and a series of
case discussion questions. Each case study is based on real-world situations and in-
cludes papers or reports describing the case.

The case studies were developed at North Carolina A&T State University.

	 B.8	Wr iting Assignments

Writing assignments can have a powerful multiplier effect in the learning process
in a technical discipline such as cryptography and network security. Adherents of
the Writing Across the Curriculum (WAC) movement (http://wac.colostate.edu/)
report substantial benefits of writing assignments in facilitating learning. Writing as-
signments lead to more detailed and complete thinking about a particular topic. In
addition, writing assignments help to overcome the tendency of students to pursue a
subject with a minimum of personal engagement—just learning facts and problem-
solving techniques without obtaining a deep understanding of the subject matter.

The IRC contains a number of suggested writing assignments, organized by
chapter. Instructors may ultimately find that this is an important part of their ap-
proach to teaching the material. I would greatly appreciate any feedback on this
area and any suggestions for additional writing assignments.

	 B.9	 Reading/Report Assignments

Another excellent way to reinforce concepts from the course and to give students
research experience is to assign papers from the literature to be read and analyzed.
The IRC includes a suggested list of papers, one or two per chapter, to be assigned.
A PDF copy of each of the papers is available at https://app.box.com/netsec6e. The
IRC also includes a suggested assignment wording.

Z02_STAL4855_06_GE_APPB.indd 441 8/10/16 9:21 AM

http://wac.colostate.edu
https://app.box.com/netsec6e

442442

References

Abbreviations

ACM	 Association for Computing Machinery
IBM	 International Business Machines Corporation
IEEE	 Institute of Electrical and Electronics Engineers
NIST	 National Institute of Standards and Technology

ALVA90	 Alvare, A. “How Crackers Crack Passwords or What Passwords to Avoid.” Proceedings,
UNIX Security Workshop II, August 1990.

ANDE80	 Anderson, J. Computer Security Threat Monitoring and Surveillance. Fort Washington,
PA: James P. Anderson Co., April 1980.

ANDE95	 Anderson, D., et al. Detecting Unusual Program Behavior Using the Statistical Com-
ponent of the Next-generation Intrusion Detection Expert System (NIDES). Technical
Report SRI-CSL-95-06, SRI Computer Science Laboratory, May 1995. www.csl.sri.com/
programs/intrusion.

ANTE06	 Ante, S., and Grow, B. “Meet the Hackers.” Business Week, May 29, 2006.
AROR12	 Arora, M. “How Secure is AES against Brute-Force Attack?” EE Times, May 7, 2012.
AXEL00	 Axelsson, S. “The Base-Rate Fallacy and the Difficulty of Intrusion Detection.” ACM

Transactions and Information and System Security, August 2000.
AYCO06	 Aycock, J. Computer Viruses and Malware. New York: Springer, 2006.
BALA98	 Balasubramaniyan, J., et al. “An Architecture for Intrusion Detection Using Autonomous

Agents.” Proceedings, 14th Annual Computer Security Applications Conference, 1998.
BARD12	 Bardou, R., et al. “Efficient Padding Oracle Attacks on Cryptographic Hardware,”

INRIA, Rapport de recherche RR-7944, Apr. 2012. http://hal.inria.fr/hal-00691958.
BASU12	 Basu, A. Intel AES-NI Performance Testing over Full Disk Encryption. Intel Corp. May

2012.
BAUE88	 Bauer, D., and Koblentz, M. “NIDX—An Expert System for Real-Time Network Intru-

sion Detection.” Proceedings, Computer Networking Symposium, April 1988.
BELL90	 Bellovin, S., and Merritt, M. “Limitations of the Kerberos Authentication System.”

Computer Communications Review, October 1990.
BELL94a	 Bellare, M., and Rogaway, P. “Optimal Asymmetric Encryption—How to Encrypt with

RSA.” Proceedings, Eurocrypt ’94, 1994.
BELL94b	 Bellovin, S., and Cheswick, W. “Network Firewalls.” IEEE Communications Magazine,

September 1994.
BELL96a	 Bellare, M.; Canetti, R.; and Krawczyk, H. “Keying Hash Functions for Message

Authentication.” Proceedings, CRYPTO ’96, August 1996; published by Springer-Verlag.
An expanded version is available at http://www-cse.ucsd.edu/users/mihir.

BELL96b	 Bellare, M.; Canetti, R.; and Krawczyk, H. “The HMAC Construction.” CryptoBytes,
Spring 1996.

BINS10	 Binsalleeh, H., et al. “On the Analysis of the Zeus Botnet Crimeware Toolkit.” Proceed-
ings of the 8th Annual International Conference on Privacy, Security and Trust, IEEE,
September 2010.

BLEI98	 Bleichenbacher, D. “Chosen Ciphertext Attacks against Protocols Based on the RSA
Encryption Standard PKCS #1,” CRYPTO ’98, 1998.

BLOO70	 Bloom, B. “Space/time Trade-offs in Hash Coding with Allowable Errors.” Communica-
tions of the ACM, July 1970.

BRYA88	 Bryant, W. Designing an Authentication System: A Dialogue in Four Scenes. Project Athena
document, February 1988. Available at http://web.mit.edu/kerberos/www/dialogue.html.

Z03_STAL4855_06_GE_REF.indd 442 8/10/16 9:23 AM

http://www.csl.sri.com/programs/intrusion
http://hal.inria.fr/hal-00691958
http://www-cse.ucsd.edu/users/mihir
http://web.mit.edu/kerberos/www/dialogue.html
http://www.csl.sri.com/programs/intrusion

References  443

CERT01	 CERT Coordination Center. “Denial of Service Attacks.” June 2001. http://www.cert.
org/tech_tips/denial_of_service.html.

CHAN02	 Chang, R. “Defending against Flooding-Based Distributed Denial-of-Service Attacks:
A Tutorial.” IEEE Communications Magazine, October 2002.

CHEN04	 Chen, S., and Tang, T. “Slowing Down Internet Worms,” Proceedings of the 24th Interna-
tional Conference on Distributed Computing Systems, 2004.

CHEN11	 Chen, T., and Abu-Nimeh, S. “Lessons from Stuxnet.” IEEE Computer, 44(4), pp. 91–93,
April 2011.

CHIN05	 Chinchani, R., and Berg, E. “A Fast Static Analysis Approach to Detect Exploit Code
Inside Network Flows.” Recent Advances in Intrusion Detection, 8th International
Symposium, 2005.

CHOI08	 Choi, M., et al. “Wireless Network Security: Vulnerabilities, Threats and Countermeasures.”
International Journal of Multimedia and Ubiquitous Engineering, July 2008.

COMP06	 Computer Associates International. The Business Value of Identity Federation. White
Paper, January 2006.

CONR02	 Conry-Murray, A. “Behavior-Blocking Stops Unknown Malicious Code.” Network
Magazine, June 2002.

COST05	 Costa, M., et al. “Vigilante: End-to-End Containment of Internet Worms.” ACM Sym-
posium on Operating Systems Principles, 2005.

CSA10	 Cloud Security Alliance. Top Threats to Cloud Computing V1.0. CSA Report, March
2010.

CSA11a	 Cloud Security Alliance. Security Guidance for Critical Areas of Focus in Cloud Com-
puting V3.0. CSA Report, 2011.

CSA11b	 Cloud Security Alliance. Security as a Service (SecaaS). CSA Report, 2011.
DAMI03	 Damiani, E., et al. “Balancing Confidentiality and Efficiency in Untrusted Relational

Databases.” Proceedings, Tenth ACM Conference on Computer and Communications
Security, 2003.

DAMI05	 Damiani, E., et al. “Key Management for Multi-User Encrypted Databases.” Proceedings,
2005 ACM Workshop on Storage Security and Survivability, 2005.

DAVI89	 Davies, D., and Price, W. Security for Computer Networks. New York: Wiley, 1989.
DAWS96	 Dawson, E., and Nielsen, L. “Automated Cryptoanalysis of XOR Plaintext Strings.”

Cryptologia, April 1996.
DENN87	 Denning, D. “An Intrusion-Detection Model.” IEEE Transactions on Software Engineering,

February 1987.
DIFF76	 Diffie, W., and Hellman, M. “Multiuser Cryptographic Techniques.” IEEE Transactions

on Information Theory, November 1976.
DIFF79	 Diffie, W., and Hellman, M. “Privacy and Authentication: An Introduction to Cryptog-

raphy.” Proceedings of the IEEE, March 1979.
DIMI07	 Dimitriadis, C. “Analyzing the Security of Internet Banking Authentication Mecha-

nisms.” Information Systems Control Journal, Vol. 3, 2007.
EFF98	 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap

Politics, and Chip Design. Sebastopol, CA: O’Reilly, 1998.
ENIS09	 European Network and Information Security Agency. Cloud Computing: Benefits,

Risks and Recommendations for Information Security. ENISA Report, November 2009.
FEIS73	 Feistel, H. “Cryptography and Computer Privacy.” Scientific American, May 1973.
FLUH00	 Fluhrer, S., and McGrew, D. “Statistical Analysis of the Alleged RC4 Key Stream

Generator.” Proceedings, Fast Software Encryption 2000, 2000.
FLUH01	 Fluhrer, S.; Mantin, I.; and Shamir, A. “Weakness in the Key Scheduling Algorithm of

RC4.” Proceedings, Workshop in Selected Areas of Cryptography, 2001.
FORD95	 Ford, W. “Advances in Public-Key Certificate Standards.” ACM SIGSAC Review, July

1995.

Z03_STAL4855_06_GE_REF.indd 443 8/10/16 9:23 AM

http://www.cert.org/tech_tips/denial_of_service.html
http://www.cert.org/tech_tips/denial_of_service.html

444   References

FOSS10	 Fossi, M., et al. “Symantec Report on Attack Kits and Malicious Websites.” Symantec,
2010.

FRAN07	 Frankel, S., et al. Establishing Wireless Robust Security Networks: A Guide to IEEE
802.11i. NIST Special Publication 800-97, February 2007.

GARD77	 Gardner, M. “A New Kind of Cipher That Would Take Millions of Years to Break.”
Scientific American, August 1977.

GOLD10	 Gold, S. “Social Engineering Today: Psychology, Strategies and Tricks.” Network
Security, November 2010.

GOOD11	 Goodin, D. “Hackers Break SSL Encryption Used by Millions of Sites.” The Register,
September 19, 2011.

GOOD12a	 Goodin, D. “Why Passwords Have Never Been Weaker—and Crackers Have Never
Been Stronger.” Ars Technica, August 20, 2012.

GOOD12b	 Goodin, D. “Crack in Internet's Foundation of Trust Allows HTTPS Session Hijacking.”
Ars Technica, September 13, 2012.

GRAN04	 Grance, T.; Kent, K.; and Kim, B. Computer Security Incident Handling Guide. NIST
Special Publication 800-61, January 2004.

HACI02	 Hacigumus, H., et al. “Executing SQL over Encrypted Data in the Database-Service-
Provider Model.” Proceedings, 2002 ACM SIGMOD International Conference on
Management of Data, 2002.

HEBE92	 Heberlein, L.; Mukherjee, B.; and Levitt, K. “Internetwork Security Monitor: An
Intrusion-Detection System for Large-Scale Networks.” Proceedings, 15th National
Computer Security Conference, October 1992.

HILT06	 Hiltgen, A.; Kramp, T.; and Wiegold, T. “Secure Internet Banking Authentication.”
IEEE Security and Privacy, Vol. 4, No. 2, 2006.

HONE05	 The Honeynet Project. “Knowing Your Enemy: Tracking Botnets.” Honeynet White
Paper, March 2005. http://honeynet.org/papers/bots.

HOWA03	 Howard, M.; Pincus, J.; and Wing, J. “Measuring Relative Attack Surfaces.” Proceedings,
Workshop on Advanced Developments in Software and Systems Security, 2003.

HUIT98	 Huitema, C. IPv6: The New Internet Protocol. Upper Saddle River, NJ: Prentice Hall,
1998.

IANS90	 I’Anson, C., and Mitchell, C. “Security Defects in CCITT Recommendation X.509 – The
Directory Authentication Framework.” Computer Communications Review, April 1990.

ILGU95	 Ilgun, K.; Kemmerer, R.; and Porras, P. “State Transition Analysis: A Rule-Based Intru-
sion Detection Approach.” IEEE Transaction on Software Engineering, March 1995.

JANS11	 Jansen, W., and Grance, T. Guidelines on Security and Privacy in Public Cloud Comput-
ing. NIST Special Publication 800-144, January 2011.

JAVI91	 Javitz, H., and Valdes, A. “The SRI IDES Statistical Anomaly Detector.” Proceedings,
1991 IEEE Computer Society Symposium on Research in Security and Privacy, May 1991.

JHI07	 Jhi, Y., and Liu, P. “PWC: A Proactive Worm Containment Solution for Enterprise
Networks.” Third International Conference on Security and Privacy in Communications
Networks, 2007.

JUEN85	 Jueneman, R.; Matyas, S.; and Meyer, C. “Message Authentication.” IEEE Communica-
tions Magazine, September 1988.

JUNG04	 Jung, J., et al. “Fast Portscan Detection Using Sequential Hypothesis Testing,” Proceed-
ings, IEEE Symposium on Security and Privacy, 2004.

KLEI90	 Klein, D. “Foiling the Cracker: A Survey of, and Improvements to, Password Security.”
Proceedings, UNIX Security Workshop II, August 1990.

KNUD98	 Knudsen, L., et al. “Analysis Method for Alleged RC4.” Proceedings, ASIACRYPT ’98,
1998.

KOBL92	 Koblas, D., and Koblas, M. “SOCKS.” Proceedings, UNIX Security Symposium III,
September 1992.

Z03_STAL4855_06_GE_REF.indd 444 8/10/16 9:23 AM

http://honeynet.org/papers/bots

References  445

KOHL89	 Kohl, J. “The Use of Encryption in Kerberos for Network Authentication.” Proceedings,
Crypto ’89, 1989; published by Springer-Verlag.

KOHL94	 Kohl, J.; Neuman, B.; and Ts’o, T. “The Evolution of the Kerberos Authentication
Service.” In Brazier, F., and Johansen, D. eds., Distributed Open Systems. Los Alamitos,
CA: IEEE Computer Society Press, 1994. Available at http://web.mit.edu/kerberos/
www/papers.html.

KUMA97	 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.
KUMA11	 Kumar, M. “The Hacker's Choice Releases SSL DOS Tool.” The Hacker News, October

24, 2011. http://thehackernews.com/2011/10/hackers-choice-releases-ssl-ddos-tool.html#.
LATT09	 Lattin, B. “Upgrade to Suite B Security Algorithms.” Network World, June 1, 2009.
LEUT94	 Leutwyler, K. “Superhack.” Scientific American, July 1994.
LINN06	 Linn, J. “Identity Management.” In Bidgoli, H., ed., Handbook of Information Security.

New York: Wiley, 2006.
LIPM00	 Lipmaa, H.; Rogaway, P.; and Wagner, D. “CTR Mode Encryption.” NIST First Modes

of Operation Workshop, October 2000. http://csrc.nist.gov/encryption/modes.
MA10	 Ma, D., and Tsudik, G. “Security and Privacy in Emerging Wireless Networks.” IEEE

Wireless Communications, October 2010.
MANA11	 Manadhata, P., and Wing, J. “An Attack Surface Metric.” IEEE Transactions on Software

Engineering, Vol. 37, No. 3, 2011.
MAND13	 Mandiant “APT1: Exposing One of China’s Cyber Espionage Units,” 2013. http://

intelreport.mandiant.com.
MAUW05	 Mauw, S., and Oostdijk, M. “Foundations of Attack Trees.” International Conference on

Information Security and Cryptology, 2005.
MEYE13	 Meyer, C.; Schwenk, J.; and Gortz, H. “Lessons Learned from Previous SSL/TLS

Attacks A Brief Chronology of Attacks and Weaknesses.” Cryptology ePrint Archive,
2013. http://eprint.iacr.org/2013/.

MILL88	 Miller, S.; Neuman, B.; Schiller, J.; and Saltzer, J. “Kerberos Authentication and Autho-
rization System.” Section E.2.1, Project Athena Technical Plan, M.I.T. Project Athena,
Cambridge, MA, 27 October 1988.

MIRK04	 Mirkovic, J., and Relher, P. “A Taxonomy of DDoS Attack and DDoS Defense Mecha-
nisms.” ACM SIGCOMM Computer Communications Review, April 2004.

MITC90	 Mitchell, C.; Walker, M.; and Rush, D. “CCITT/ISO Standards for Secure Message Han-
dling.” IEEE Journal on Selected Areas in Communications, May 1989.

MOOR01	 Moore, A.; Ellison, R.; and Linger, R. “Attack Modeling for Information Security and
Survivability.” Carnegie-Mellon University Technical Note CMU/SEI-2001-TN-001,
March 2001.

MORR79	 Morris, R., and Thompson, K. “Password Security: A Case History.” Communications of
the ACM, November 1979.

NACH02	 Nachenberg, C. “Behavior Blocking: The Next Step in Anti-Virus Protection.” White
Paper, SecurityFocus.com, March 2002.

NCAE13	 National Centers of Academic Excellence in Information Assurance/Cyber Defense.
NCAE IA/CD Knowledge Units. June 2013.

NEUM99	 Neumann, P., and Porras, P. “Experience with EMERALD to Date.” Proceedings, 1st
USENIX Workshop on Intrusion Detection and Network Monitoring, April 1999.

NEWS05	 Newsome, J.; Karp, B.; and Song, D. “Polygraph: Automatically Generating Signatures
for Polymorphic Worms.” IEEE Symposium on Security and Privacy, 2005.

NIST95	 National Institute of Standards and Technology. An Introduction to Computer Security:
The NIST Handbook. Special Publication 800-12. October 1995.

OECH03	 Oechslin, P. “Making a Faster Cryptanalytic Time-Memory Trade-Off.” Proceedings,
Crypto 03, 2003.

Z03_STAL4855_06_GE_REF.indd 445 8/10/16 9:23 AM

http://web.mit.edu/kerberos/www/papers.html
http://thehackernews.com/2011/10/hackers-choice-releases-ssl-ddos-tool.html#
http://csrc.nist.gov/encryption/modes
http://intelreport.mandiant.com
http://intelreport.mandiant.com
http://eprint.iacr.org/2013
http://web.mit.edu/kerberos/www/papers.html
http://SecurityFocus.com

446   References

ORMA03	 Orman, H. “The Morris Worm: A Fifteen-Year Perspective.” IEEE Security and Privacy,
September/October 2003.

PARZ06	 Parziale, L., et al. TCP/IP Tutorial and Technical Overview, 2006. ibm.com/redbooks.
PELT07	 Peltier, J. “Identity Management.” SC Magazine, February 2007.
PERR03	 Perrine, T. “The End of Crypt () Passwords . . . Please?” ;login:, December 2003.
POIN02	 Pointcheval, D. “How to Encrypt Properly with RSA.” CryptoBytes, Winter/Spring

2002. http://www.rsasecurity.com/rsalabs.
PORR92	 Porras, P. STAT: A State Transition Analysis Tool for Intrusion Detection. Master’s Thesis,

University of California at Santa Barbara, July 1992.
PROV99	 Provos, N., and Mazieres, D. “A Future-Adaptable Password Scheme.” Proceedings of

the 1999 USENIX Annual Technical Conference, 1999.
RADC04	 Radcliff, D. “What Are They Thinking?” Network World, March 1, 2004.
RIVE78	 Rivest, R.; Shamir, A.; and Adleman, L. “A Method for Obtaining Digital Signatures

and Public Key Cryptosystems.” Communications of the ACM, February 1978.
ROBS95a	 Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701, July 1995.
ROBS95b	 Robshaw, M. Block Ciphers. RSA Laboratories Technical Report TR-601, August 1995.
ROS06	 Ros, S. “Boosting the SOA with XML Networking.” The Internet Protocol Journal,

December 2006. cisco.com/ipj.
SALT75	 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer Systems.”

Proceedings of the IEEE, September 1975.
SCHN99	 Schneier, B. “Attack Trees: Modeling Security Threats.” Dr. Dobb’s Journal, December

1999.
SEAG08	 Seagate Technology. 128-Bit Versus 256-Bit AES Encryption. Seagate Technology Paper,

2008.
SIDI05	 Sidiroglou, S., and Keromytis, A. “Countering Network Worms Through Automatic

Patch Generation.” IEEE Security and Privacy, November-December 2005.
SING99	 Singh, S. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum

Cryptography. New York: Anchor Books, 1999.
SNAP91	 Snapp, S., et al. “A System for Distributed Intrusion Detection.” Proceedings, COMPCON

Spring ’91, 1991.
SPAF92a	 Spafford, E. “Observing Reusable Password Choices.” Proceedings, UNIX Security

Symposium III, September 1992.
SPAF92b	 Spafford, E. “OPUS: Preventing Weak Password Choices.” Computers and Security,

No. 3, 1992.
SPAF00	 Spafford, E., and Zamboni, D. “Intrusion Detection Using Autonomous Agents.”

Computer Networks, October 2000.
STAL15	 Stallings, W., and Brown, L. Computer Security. Upper Saddle River, NJ: Pearson, 2015.
STAL16	 Stallings, W. Cryptography and Network Security: Principles and Practice, Seventh

Edition. Upper Saddle River, NJ: Pearson, 2016.
STAL16b	
STEI88	 Steiner, J.; Neuman, C.; and Schiller, J. “Kerberos: An Authentication Service for Open

Networked Systems.” Proceedings of the Winter 1988 USENIX Conference, February
1988.

STEP93	 Stephenson, P. “Preventive Medicine.” LAN Magazine, November 1993.
STEV11	 Stevens, D. “Malicious PDF Documents Explained,” IEEE Security & Privacy, January/

February 2011.
SYMA13	 Symantec, “Internet Security Threat Report, Vol. 18.” April 2013.
TSUD92	 Tsudik, G. “Message Authentication with One-Way Hash Functions.” Proceedings,

INFOCOM ’92, May 1992.
VACC89	 Vaccaro, H., and Liepins, G. “Detection of Anomalous Computer Session Activity.”

Proceedings of the IEEE Symposium on Research in Security and Privacy, May 1989.

Z03_STAL4855_06_GE_REF.indd 446 8/10/16 9:23 AM

http://www.rsasecurity.com/rsalabs
http://ibm.com/redbooks
http://cisco.com/ipj

References  447

VANO94	 van Oorschot, P., and Wiener, M. “Parallel Collision Search with Application to Hash
Functions and Discrete Logarithms.” Proceedings, Second ACM Conference on Computer
and Communications Security, 1994.

VIGN02	 Vigna, G.; Cassell, B.; and Fayram, D. “An Intrusion Detection System for Aglets.” Pro-
ceedings of the International Conference on Mobile Agents, October 2002.

WAGN00	 Wagner, D., and Goldberg, I. “Proofs of Security for the UNIX Password Hashing
Algorithm.” Proceedings, ASIACRYPT ’00, 2000.

WANG05	 Wang, X.; Yin, Y.; and Yu, H. “Finding Collisions in the Full SHA-1.” Proceedings,
Crypto ’05, 2005; published by Springer-Verlag.

WEAV03	 Weaver, N., et al. “A Taxonomy of Computer Worms.” The First ACM Workshop on
Rapid Malcode (WORM), 2003.

WOOD10	 Wood, T., et al. “Disaster Recovery as a Cloud Service Economic Benefits & Deploy-
ment Challenges.” Proceedings, USENIX HotCloud ’10, 2010.

XU10	 Xu, L. Securing the Enterprise with Intel AES-NI. Intel White Paper, September 2010.
ZOU05	 Zou, C., et al. “The Monitoring and Early Detection of Internet Worms.” IEEE/ACM

Transactions on Networking, October 2005.

Z03_STAL4855_06_GE_REF.indd 447 8/10/16 9:23 AM

448448

Page 20: Definition From An Introduction to Computer Secu-
rity: The NIST Handbook by Barbara Guttman and Edward A.
Roback, U.S. Department of Commerce, 1995.
Page 20–21: Three Objectives in Terms of Requirements and the
Definition From Standards for Security Categorization of Fed-
eral Information and Information Systems. Published by U.S.
Department of Commerce, © 2004.
Page 21–22: From Standards for Security Categorization of
Federal Information and Information Systems, U.S. Department
of Commerce, 2004.
Page 28: From Data Communication Networks: Open Systems
Interconnection (OSI); Security, Structure and Applications.
Copyright © International Telecommunication Union. Used by
permission of International Telecommunication Union.
Page 29: Two specific authentication From Data Communica-
tion Networks: Open Systems Interconnection (OSI); Security,
Structure and Applications. Used by permission of International
Telecommunication Union.
Page 31: From Data Communication Networks: Open Systems
Interconnection (OSI); Security, Structure and Applications.
Copyright © International Telecommunication Union. Used by
permission of International Telecommunication Union.
Page 32: From Data Communication Networks: Open Systems
Interconnection (OSI); Security, Structure and Applications.
Copyright © International Telecommunication Union. Used by
permission of International Telecommunication Union.
Page 32: From 2013 National Centers of Academic Excellence
in Information Assurance Designees Announced, National
Security Agency, 2013.
Page 51: Feistel, H. “Cryptography and Computer Privacy.”
Scientific American, Vol 228, No 5 pp 15–23 May 1973.
Page 64: From Cryptology: System Identification and Key-
Clustering by I. J. Kumar. Published by Aegean Park Press, © 1997.
Page 72–73: Comments to NIST concerning AES Modes of
Operations: CTR-Mode Encryption, National Institute of Stan-
dards and Technology (NIST), National Institute of Standards
and Technology, 2000.
Page 80: From Security for Computer Networks: An Introduc-
tion to Data Security in Teleprocessing and Electronic Funds
Transfer, 02e by D. W. Davies and W. L. Price. Published by
Wiley, © 1989.
Page 82: From “Message Authentication with One-Way Hash
Functions” by Gene Tsudik from ACM SIGCOMM Com-
puter Communication Review, Volume: 22, Issue: 05, pp: 29–38.
Published by ACM, Inc., © 1992.
Page 91: Lists From HMAC: Keyed-Hashing for Message
Authentication by H. Krawczyk, M. Bellare and R. Canetti.
Published by Internet Engineering Task Force, © 1997.
Page 134: X.509 Hierarchy: A Hypothetical Example from
Series X: Data Networks, Open System Communications And
Security X.509 -International Standard Iso/Iec 9594-8. Used by
permission of International Telecommunication Union.
Page 143: From The NIST Definition of Cloud Computing:
Recommendations of the National Institute of Standards and
Technology by Peter Mell and Timothy Grance, U.S. Depart-
ment of Commerce, 2011.
Page 165: From The EAP-TLS Authentication Protocol by D.
Simon, B. Aboba, R. Hurst. Published by Internet Engineering
Task Force, © 2008.

Page 174: From NIST Cloud Computing Reference Architec-
ture: Recommendations of the National Institute of Standards
and Technology by Fang Liu, Jin Tong, Jian Mao, Robert Bohn,
John Messina, Lee Badger and Dawn Leaf. Published by U.S.
Department of Commerce, © 2011.
Page 179: Table 01 Security and Privacy Issues and Recom-
mendations from Guidelines on Security and Privacy in Public
Cloud Computing by Wayne Jansen and Timothy Grance, U.S.
Department of Commerce, 2011.
Page 180–181: From “Executing SQL Over Encrypted Data in
the Database-Service-Provider Model” by Hakan Hacigümüs,
Bala Iyer, Chen Li and Sharad Mehrotra from A Proceeding
SIGMOD ‘02 Proceedings of the 2002 ACM SIGMOD Inter-
national Conference on Management of Data, pp: 216–227.
Published by ACM Inc., © 2002.
Page 182: From SecaaS: Defined Categories of Service 2011.
Published by Cloud Security Alliance, © 2011.
Page 182: Following SecaaS Categories of Service from SecaaS:
Defined Categories of Service 2011. Published by Cloud Secu-
rity Alliance, © 2011.
Page 243: From Establishing Wireless Robust Security Net-
works: A Guide to IEEE 802.11i: Recommendations of the
National Institute of Standards and Technology by Sheila
Frankel, Bernard Eydt, Les Owens and Karen Scarfone, U.S.
Department of Commerce, 2007.
Page 244: From Establishing Wireless Robust Security Net-
works: A Guide to IEEE 802.11i: Recommendations of the
National Institute of Standards and Technology by Sheila
Frankel, Bernard Eydt, Les Owens and Karen Scarfone. U.S.
Department of Commerce, 2007.
Page 245: From Establishing Wireless Robust Security Net-
works: A Guide to IEEE 802.11i: Recommendations of the
National Institute of Standards and Technology by Sheila
Frankel, Bernard Eydt, Les Owens and Karen Scarfone, U.S.
Department of Commerce, 2007.
Page 259–260: From TCP/IP Tutorial and Technical Overview by
Lydia Parziale, David T. Britt, Chuck Davis, Jason Forrester, Wei
Liu, Carolyn Matthews and Nicolas Rosselot. Published by IBM
Corporation, © 2006.
Page 262–263: Excerpt from Multipurpose Internet Mail Exten-
sions (MIME) Part Two by Ned Freed and Nathaniel S Boren-
stein. Published by Internet Engineering Task Force, © 1996.
Page 264–265: From Multipurpose Internet Mail Extensions
(MIME) Part Five: Conformance Criteria and Examples by Ned
Freed and Nathaniel S Borenstein. Published by Internet Engi-
neering Task Force, © 1996.
Page 266: From DRAFT NIST Special Publication 800-177:
Trustworthy Email by SRamaswamy Chandramouli, Simson
Garfinkel, Stephen Nightingale and Scott Rose, U.S. Depart-
ment of Commerce, 2015.
Page 267: From DRAFT NIST Special Publication 800-177:
Trustworthy Email by SRamaswamy Chandramouli, Simson
Garfinkel, Stephen Nightingale and Scott Rose, U.S. Depart-
ment of Commerce, 2015.
Page 273: From Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification by B. Ramsdell and
S. Turner. Published by Internet Engineering Task Force, © 2010.
Page 283: From Resource Records for the DNS Security Exten-
sions by R. Arends, R. Austein, M. Larson, D. Massey and S.
Rose. Published by Internet Engineering Task Force, © 2005.

Credits

Z04_STAL4855_06_GE_CRED.indd 448 8/10/16 9:35 AM

CREDITS  449

Page 306: From IPv6: The New Internet Protocol by Christian
Huitema. Published by Pearson, © 1998.
Page 306: The Document From IP Security (IPsec) and Internet
Key Exchange (IKE) Document Roadmap by S. Frankel and S.
Krishnan. Published by Internet Engineering Task Force, © 2011.
Page 307: From Security Architecture for the Internet Protocol by
S. Kent and K. Seo. Published by Network Working Group, © 2005.
Page 326: From IPv6: The New Internet Protocol by Christian
Huitema. Published by Pearson, © 1998.
Page 334: From Cryptographic Suites for Ipsec by P. Hoffman.
Published by Network Working Group, © 2005.
Page 338: NIST Special Publication 800-83 Revision 1: Guide to
Malware Incident Prevention and Handling for Desktops and
Laptops, U.S. Department of Commerce.
Page 348: Most of Which are Still Seen in Active Use from
Internet Security Threat Report 2013, Volume 18. Published by
Symantec Corporation, © 2013.
Page 356: From Know your Enemy: Tracking Botnets by Paul
Bacher, Thorsten Holz , Markus Kötter and Georg Wicherski.
Published by The Honeynet Project, © 2005.
Page 362: LAN Magazine.
Page 365–366: Security and Privacy in Communications Net-
works and the Workshops, IEEE.
Page 371: IEEE Communications Magazine.
Page 377: From Computer Security Incident Handling Guide by
Karen Kent and Brian Kim, National Institute of Standards and
Technology, 2004.
Page 380: De Alvare, A. “How Crackers Crack Passwords or
What Passwords to Avoid.” Proceedings, UNIX Security Work-
shop II, August 1980; US Department of Commerce.

Page 382: Technical Report : STAT -- A State Transition Analy-
sis Tool For Intrusion Detection, ACM.
Page 385: From “An Intrusion-Detection Model” by Dorothy
E. Denning in IEEE Transactions on Software Engineering,
Volume: 13, Issue: 02, pp: 222–232. Published by IEEE, ©
1987.
Page 393: From Intrusion Detection Message Exchange
Requirements by M. Wood and M. Erlinger. Published by Net-
work Working Group, © 2007.
Page 394: From The Intrusion Detection Message Exchange
Format (IDMEF) by H. Debar, D. Curry and B. Feinstein. Pub-
lished by Network Working Group, © 2007.
Page 394: From The Intrusion Detection Exchange Protocol
(IDXP) by B. Feinstein and G. Matthews. Published by Network
Working Group, © 2007.
Page 397: From Guidelines on Firewalls and Firewall Policy:
Recommendations of the National Institute of Standards and
Technology by Karen Scarfone and Paul Hoffman, U.S. Depart-
ment of Commerce, 2009.
Page 402–403: Adapted from on Spafford, Eugene. “Observing
Reusable Password Choices.” Proceedings, UNIX Security Sym-
posium III. September 1992. Accessed at http://docs.lib.purdue.
edu/cgi/viewcontent.cgi?article=1969&context=cstech.
Page 417: Lists of Following Weaknesses of Packet Filter Fire-
walls from Guidelines on Firewalls and Firewall Policy: Rec-
ommendations of the National Institute of Standards and
Technology by Karen Scarfone and Paul Hoffman. Published by
U.S. Department of Commerce, © 2009.
Page 419: From SOCKS Protocol Version 5 by M. Leech, M.
Ganis, Y. Lee, R. Kuris, D. Koblas and L. Jones. Published by
Network Working Group, © 1996.

Z04_STAL4855_06_GE_CRED.indd 449 8/10/16 9:35 AM

http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1969&context=cstech
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1969&context=cstech

450450

Index

A
Access, 30, 41

control, 29, 401–402
threats, 41

Accessibility, 223
Access point (AP), IEEE 802.11, 233
Access policy, 412–413
Access requestor (AR), 161

supplicants, 161
Accidental association, 224
Account or service hijacking, 178
Active attacks, security, 25–27
Add Round Key

AES, 57
algorithm, 56–59
Data Encryption Algorithm (DEA), 52
Data Encryption Standard (DES), 52–55
decryption, defined, 47, 97
Diffie–Hellman key exchange, 104–107
Digital Signature Algorithm (DSA), 108
elliptic curve cryptography (ECC), 109
encryption, 47, 96
mix columns, 59
public-key cryptography, 96–100
RSA public-key encryption, 101–103
state array, 56
structure, 56
subkey generation, 52
substitution bytes, 56
symmetric block encryption, 52–59
triple Data Encryption Standard (3DES), 54–55

Ad hoc networks, 224
Advanced Encryption Standard (AES), 52, 55–59
Advanced persistent threats (APTs), 341–342
AES. See Advanced Encryption Standard (AES)
Algorithms, 46, 52–59, 62–63, 100–109, 273–274, 316

cryptographic, 273–274
ESP, 316
HMAC, 91–93
S/MIME, 273–274

Anti-replay service, ESP, 316–317
Application-level gateway, 419
Application proxy, 419
Architecture, 24–25

open systems interconnection (OSI), 24–25
Attack(s), 25–27. See also Cryptanalysis; Security attacks;

Threats
active, 27
chosen plaintext, 49
ciphertext only, 48
denial-of-service (DoS), 30
insider, 379
intruder, 377
kits, 340
known plaintext, 49
man-in-the-middle, 107–108
messages, types of for, 49

passive, 25
password, 135–136
security, 25–27
source routing, 417
sources, 340–341
tiny fragment, 417–418

Attacking IRC chat networks, 357
Attack surfaces, 36–37
Attack trees, 37–39
Audit records

detection-specific, 383
field

action, 383
exception-condition, 383
object, 383
resource-usage, 383
subject, 383
time-stamp, 383–384

native, 383
Authentication, 29, 79–84, 164, 189, 192–193, 215.

See also Message authentication; Message
authentication codes (MAC)

applications, 119–155
client/server exchange, 137
data origin, 29, 32
dialogues, 125–132
forwarding, 135
IEEE 802.11i phase, 237–240
IKE key determination, 327–328
Internet Protocol (IP), 323
interrealm, 135
Kerberos, 124–137
key exchange client and server, SSL, 200–201
message, 78–112
methods, 164
peer entity, 29
pretty good privacy (PGP), 279–280
public-key infrastructure (PKI), 146–149
remote user, 120–122
server (AS), 125, 166
service exchange, 136
X.509 service, 139

Authority key identifier, 145

B
Backdoor (trapdoor), 359
Barcode readers, 224
Barrier security, 230
Base-rate fallacy, 388–389
Basic service set (BSS), IEEE 802.11, 233–234
Bastion host, 421
Bcrypt, 400. See also Hash functions
Behavior-blocking software, 363
Block ciphers, 50, 52, 63–65

cipher block chaining (CBC) mode, 68–70
cipher feedback (CFB) mode, 70–71

Z05_STAL4855_06_GE_IDX.indd 450 8/11/16 12:22 PM

Index  451

Circuit-level gateway, 419–420
Circuit-level proxy, 419
Clandestine user, intruders, 377
Clear signing, S/MIME, 277
Client/server authentication exchange, 137
Client-side vulnerabilities, 352–353

drive-by-download, 352–353
Cloud auditor, 175
Cloud-based applications, 226
Cloud broker, 175

service aggregation, 176
service arbitrage, 176
service intermediation, 176

Cloud carrier, 175
Cloud computing

abuse and nefarious use of, 177
control functions and classes, 185
deployment models

community cloud, 173
hybrid cloud, 173–175
private cloud, 173
public cloud, 173

elements, 171–174
measured service, 172
on-demand self-service, 172
rapid elasticity, 172
reference architecture, 174–176
resource pooling, 172–173
service models, 173

Infrastructure as a service (IaaS), 173
Platform as a service (PaaS), 173
Software as a service (SaaS), 173

Cloud consumer, 175
Cloud provider, 175
Cloud security

risks and countermeasures
abuse/nefarious use of cloud computing, 177
account or service hijacking, 178
data loss or leakage, 178
insecure interfaces and APIs, 177
malicious insiders, 177
shared technology issues, 177–178
unknown risk profile, 178

as a service
business continuity and disaster recovery, 184
data loss prevention (DLP), 183–184
elements, 184
e-mail security, 184
encryption, 184
identity and access management (IAM), 183
intrusion management, 184
network security, 184–185
security as a service (SecaaS), 182
security assessments, 184
security information and event management

(SIEM), 184
web security, 184

Codebook, 68
defined, 68
electronic (ECB), 68

Code, message authentication (MAC), 211–212

defined, 48
design of, 50
electronic codebook (ECB), 68
modes of operation, 68
plaintext processing, cryptography, 48

Bloom filter, 404–406
Bogus reconfiguration commands. See Network injection
Boot sector infector, 346
Bots, uses of, 356–357

attacking IRC chat networks, 357
DDoS attacks, 356
installing advertisement add-ons and BHOs, 357
keylogging, 356
manipulating online polls/games, 357
sniffing traffic, 356
spamming, 356
spreading new malware, 356

Bring-your-own-device (BYOD) policy, 228
Broad network access, 171–172
Browser helper objects (BHOs), 357
Business continuity and disaster recovery, 184

C
Canonical form, MIME and S/MIME, 264
Certificates, 140–144, 148, 200–201, 278

certification authority (CA), 140, 147, 276, 278
client types, 208
enhanced security services, 278–279
extensions, 141
forward, 143
issuer, 140, 141, 146
key information, 141
path constraints, 146
period of validity, 141
policy information, 145
policy mappings, 146
public-key, 138–139
reverse, 143
revocation list (CRL), 144, 278
revocation of, 144
serial number, 141
signature, 141
signature algorithm identifier, 141
S/MIME, 278
subject, 141
unique identifiers, 141
user’s, obtaining, 142–144, 278
version, 140–141
X.509, 139–146

Certificates-only message, S/MIME, 278
Certificate usage field, 285
Certification authority (CA), 138, 147

key distribution, 138
public-key infrastructure (PKI), 146–149
X.509 certificates, 139–146

Change Cipher Spec Protocol, 191, 194–195, 201
Channels, 215–216, 223
Cipher block chaining (CBC) mode, 68–70
Cipher feedback (CFB) mode, 70–71
Cipher suites, TLS, 207
Ciphertext, 48, 97

Z05_STAL4855_06_GE_IDX.indd 451 8/11/16 12:22 PM

452   Index

D
Data

confidentiality, 28, 29
integrity, 30
origin authentication, 29

Data Encryption Standard (DES), 52–55
algorithm, description of, 53
strength of, 53–54
triple (3DES), 54–55

Data loss prevention (DLP), 178, 183–184
Data protection, cloud computing

attributes, 181
encryption scheme, 181
multi-instance model, 180
multi-tenant model, 180
NIST guidelines on security and privacy, 178–180
primary key, 181
relation, 181
tuples, 181

Decryption algorithm, 47, 97
Demilitarized zone (DMZ) networks, 423–425
Denial-of-service (DoS) attack, 30

constructing attack network, 370–371
hit list, 371
local subnet, 371
random, 371
topological, 371

countermeasures, 371–372
detection and filtering, 371
prevention and preemption, 371
source traceback and identification, 371

defined, 225
direct, 369
flooding-based, 370
internal resource, 368
reflector, 369

De-perimeterization, 227
Detection-specific audit records, 383
Device security, 228–230
Diffie–Hellman key exchange, 104–105, 200, 202, 224

algorithm, 105–106
anonymous, 200
ephemeral, 200
fixed, 199
introduction to, 104–105
man-in-the-middle attack, 107
protocols, 107–108

Digital Signature Algorithm (DSA), 108, 109
Digital signatures, 108–112

generation and verification, 110–111
RSA, algorithm, 111–112

Digital Signature Standard (DSS), 108
Discovery phase, IEEE 802.11i, 240–242
Distributed firewall, 426–427

configuration, 427–428
Distributed intrusion detection

central manager module, 390–391
host agent module, 390
LAN monitor agent module, 390

Distribution system (DS), IEEE 802.11, 233

Communications channel (CC), 38
Community cloud, 173
Complete mediation, 33
Components, IDES, 394–395
Compression

S/MIME, 272–273
SSL, 192

Computer-generated passwords, 403
Computer security, defined, 20
Confidentiality, 20–22, 45–73, 241, 271, 316, 320.

See also Encryption
data, 20, 28, 29
Encryption data, 249
Internet Protocol (IP), 322
pretty good privacy (PGP), 279–280
traffic flow (TFC), 316

Connection Protocol, SSH, 209, 215–219
Connection, TLS, 192
Controls access, 413–414
Cookie exchange, 327
Countermeasures

distributed intelligence gathering approaches, 366–367
host-based behavior-blocking software, 363
host-based scanners, 362–364

first-generation scanner, 362
fourth-generation scanner, 363
second-generation scanner, 362–363
third-generation scanner, 363

malware countermeasure approaches
detection, 361
generality, 361
global and local coverage, 361
identification, 361
minimal denial-of-service costs, 361
removal, 361
resiliency, 361
timeliness, 361
transparency, 361

perimeter scanning approaches, 364–365
egress monitors, 365
ingress monitors, 364–365

rootkit countermeasures, 364
spyware detection and removal, 364
worm countermeasures

filter-based worm containment, 365
payload-classification-based, 365
rate halting, 366
rate limiting, 366
signature-based worm scan filtering, 365
TRW scan detection, 366

Credential service provider (CSP), 121–122
CRL issuer, PKI, 148
Cross-certification, PKI, 148
Cryptanalysis, 48–50
Cryptographic computations, 202–203
Cryptography, 48, 99–100. See also Public-key cryptography

algorithms, 105–106
classification of systems, 48
cryptosystems, applications for, 99–100
encryption structure, 97–99
public-key, 96–109
requirements for, 100

Z05_STAL4855_06_GE_IDX.indd 452 8/11/16 12:22 PM

Index  453

cryptanalysis, 48–50
cryptography, 48
Data Encryption Standard (DES), 52–55
decryption algorithms, 97
digital signatures, 108
double, 135
end-to-end, 123
Feistel cipher structure, 50–52
introduction to, 46
key distribution, 123–124, 137–139
message authentication and, 78–112
National Institute of Standards and Technology (NIST),

42, 52, 87, 108
plaintext, 48–50, 97
propagating cipher block chaining (PCBC), 135
public-key, 96–109
RSA algorithm, 101–103
stream cipher, 48, 63–65, 70
symmetric, 46–52
symmetric block algorithms, 52–59
system dependence, 134
triple Data Encryption Standard (3DES), 54–55

End entity, PKI, 147
End-to-end encryption, 123
EnvelopedData, S/MIME, 275–276
Exchange format, Intrusion detection, 393–395
Exchanges, 136–137. See also Key exchange

authentication service, 136
client/server authentication, 137
Kerberos, 134–136
ticket-granting service, 136–137

Extended service set (ESS), IEEE 802.11, 234
Extensible Authentication Protocol (EAP), 164

authentication methods, 164–165
EAP-GPSK (EAP Generalized Pre-Shared Key),

 165
EAP-IKEv2, 165
EAP-TLS (EAP Transport Layer Security), 165
EAP-TTLS (EAP Tunneled TLS), 165

exchanges, 165–168
authentication server, 166
EAP authenticator, 166
EAP passthrough mode, 166
EAP peer, 166
RADIUS, 166

layered context, 164
messages

code, 166
data, 167
flow in pass-through mode, 167
identifier, 166
length, 166

Extensible Markup Language (XML), 394
External business requirements, 227

F
Fail-safe default, 33–34
Feistel cipher structure, 50–52
File infector, 346
File sharing, 348
Filter-based worm containment, 365

DNS-based Authentication of Named Entities (DANE),
266–267, 284–286

for SMTP, 286
TLSA record, 284–285

DNS Security Extensions (DNSSEC), 266, 280–284
domain name system, 280–282
protocol, 282–284

Domain-based Message Authentication, Reporting, and
Conformance (DMARC), 267–268

functional flow, 298
on receiver side, 296–298
reports, 299
on sender side, 296

DomainKeys Identified Mail (DKIM), 289–295
E-mail threats, 290–291
functional flow, 292–295
strategy, 291–292

Double bastion inline, 424, 428
Double bastion T, 428
Double encryption, 135
Dynamic Host Configuration Protocol (DHCP), 164

E
EAP-GPSK (EAP Generalized Pre-Shared Key), 165
EAP-IKEv2, 165
EAP-TLS (EAP Transport Layer Security), 165
EAP-TTLS (EAP Tunneled TLS), 165
Eavesdropping. See Man-in-the middle attacks
Economy of mechanism, 33
Electronic codebook (ECB), 68
Electronic data interchange (EDI), 145
Electronic mail security, 253–299

DomainKeys Identified Mail (DKIM), 289–295
instant messenger facility, 348
pretty good privacy (PGP), 279–280
Secure/Multipurpose Internet Mail Extension

(S/ MIME), 268–279
Electronic monitoring, 397
Electronic user authentication

means of, 122
NIST model for, 121–122

Elliptic curve cryptography (ECC), 109
Elliptic curve digital signature algorithm (ECDSA), 109
E-mail formats, 258–266
E-mail security, 184
E-mail threats, 266–268
Encapsulating security payload (ESP), 314–321

algorithms, 316
anti-replay service, 316–317
format, 314–316
padding, 316
transport mode, 317–320
tunnel mode, 320–321

Encapsulation, 35
Encryption, 45–73, 81–82, 99–100, 104, 109, 137, 184, 225.

See also Block ciphers; Public-key cryptography;
Stream ciphers

Advanced Encryption Standard (AES), 52, 55–59
algorithms, 46, 52–59, 62–63, 100–109
block ciphers, 50, 52, 63–65
ciphertext, 97

Z05_STAL4855_06_GE_IDX.indd 453 8/11/16 12:22 PM

454   Index

I
Identifier (ID), 395, 396, 398
Identity and access management (IAM), 183
Identity theft (MAC spoofing), 224
IEEE 802.11i LAN, 236–250

authentication phase, 239, 242–243
characteristics of, 236–237
connection termination, 240
discovery phase, 239–241
key management phase, 241, 244–246
phases of operation, 237–240
protected data transfer phase, 239, 248–249
pseudorandom function (PRF), 249–250
Robust Security Network (RSN), 237

IEEE 802.11 LAN, 230–236
association-related services, 235
message distribution, 235
network components, 233–234
protocol architecture, 231–233

IEEE 802.1X port-based network access control, 163,
168–170

EAP-Key, 170
EAP-Logoff, 170
EAPOL-EAP, 170
EAPOL-Start, 170
packet body, 170

length, 170
packet type, 170

protocol version, 170
terminology related to IEEE 802.1X, 170
802.1X access control, 170

Independent basic service set (IBSS), IEEE 802.11, 233
Information

access threats, 41
security, 18

Infrastructure as a service (IaaS), 173
Initialization, 192

PKI, 148
Insecure interfaces and APIs, 177
International Telecommunication Union (ITU), 24
Internet Architecture Board (IAB), 303
Internet banking server (IBS), 38
Internet Engineering Task Force (IETF)

standards from, 42
Internet key exchange (IKE), 325–333

cookies, 327
header and payload formats, 329–333
IKEv5 message exchange, 328–329
key determination protocol, 326–329

Internet mail architecture, 254–258
e-mail components, 254–256
e-mail Protocols, 256–258

Internet Protocol (IP), 134, 303–309. See also Internet
Protocol security (IPsec)

authentication plus confidentiality, 322–323
combining security associations (SA), 322–325
cryptographic suites, 333–335
dependence, 134
encapsulating security payload (ESP), 314–321
Internet key exchange (IKE), 325–333
security (IPsec), 309–314

Firewall, 164, 410–428
basing, 420–423

bastion host, 421
host-based, 421–422
personal, 422–423

characteristics and access policy, 412–413
application protocol, 413
IP address and protocol values, 412
network activity, 413
user identity, 413

location and configurations, 423–428
distributed, 426–427
DMZ networks, 423–425
summary of, 427–428
virtual private networks, 425–426

need for, 411–412
types of, 414–420

application-level gateway, 419
circuit-level gateway, 419–420
packet filtering, 414–418
stateful inspection, 418–419

Forward certificate, 143
Fourth-generation scanner, 363
Fragmentation, SSL, 192

G
GPS capability on mobile devices, 228
Group master key (PMK), IEEE 802.11i, 246–247

H
Hackers, 377–378
Handheld PDAs, 224
Handshake Protocol, 165, 197–199
Hashed passwords, 397–399
Hash functions, 82–91, 399–400

HMAC, 91–93
one-way, 82–84
requirements, 84–85
secure, 84–85
Secure Hash Algorithm (SHA), 87
SHA-1 secure functions, 87–91
simple, 85–86
strong collision resistance, 84
weak collision resistance, 84

Heartbeat Protocol, 204–205
HMAC, 91–93

algorithm, 92–93
design objectives, 91–92

Honeypots, 391–393
Host audit record (HAR), 390–391
Host-based firewalls, 421–422
Host-based scanners, 362–363
Host keys, SSH, 209–214
Host-resident firewall, 427
HTTPS, 188, 207–208
Human attack surface, 36–37
Hybrid cloud, 173

Z05_STAL4855_06_GE_IDX.indd 454 8/11/16 12:22 PM

Index  455

K
Kerberos, 124–137

authentication
dialogues, 125–133
forwarding, 135
server (AS), 125
service exchange, 136

client/server authentication exchange, 137
differences between versions 4 and 5, 134–136
double encryption, 135
encryption system dependence, 134
environmental shortcomings, 134–135
Internet protocol dependence, 134
interrealm authentication, 135
introduction to, 124
message byte ordering, 134
nonce, 136
options, 136
password attacks, 135–136
principal, 134
propagating cipher block chaining (PCBC) encryption,

135
realms, 133–134, 136
session keys, 135
technical deficiencies of, 135
ticket-granting server (TGS), 126–127
ticket-granting service exchange, 136–137
ticket lifetime, 134–135
times, 136
version 4, 125–133
version 5, 134–137

Key distribution, 126, 140–142, 242, 247–248. See also
Exchanges; Private keys; Public keys

center (KDC), 123
certificate authority (CA), 138
hierarchy, 246
IEEE 802.11i management phase, 241, 246–249
permanent key, 123
pretty good privacy (PGP), 279–280
private key, 270
public-key certificates, 138
public-key distribution of secret keys, 138–139
session key, 123
wireless network security, 244–248

Keyed hash function. See Message authentication codes
(MAC)

Key exchange, 104–108, 199–200, 212, 325–333
certificate messages for, 200–201
client authentication and, 201
Diffie–Hellman, 104–108, 199
Internet, 325–333
Internet (IKE) key determination protocol, 326–329
protocols, 107
RSA, 199
server authentication and, 200–201
SSH Transport Layer Protocol, 210–211

Key generation, 203, 213–214, 278
AP, 239
S/MIME, 278

Keylogger, 358
Keylogging, 356

security association database (SAD), 309–311
security policy database (SPD), 309, 311–312
traffic processing, 312–314

Internet Protocol security (IPsec), 303–314
documents, 306–307
packets, 312–314
policy, 309–312
routing, 306
transport mode, 308
tunnel mode, 308–309

Internet security, 253–299
defined, 19
electronic mail, 253–299
Internet protocol (IP), 164, 303–309
Transport Layer Security (TLS), 165, 190–207
transport-level, 187–219

Internet Security Association and Key Management Proto-
col (ISAKMP), 325

Internet service provider (ISP), 411
Internet standards

Internet Architecture Board (IAB), 42
Internet Engineering Task Force (IETF), 42
RFCs, 42

Intruder behavior patterns
criminals, 378
hackers, 377–378
insider attacks, 379

Intruders, 375–406
behavior patterns, 377–379
intrusion detection

audit records, 383–384
base-rate fallacy, 388–389
distributed, 389–393
exchange format, 393–396
rule-based, 386–388
statistical anomaly detection, 384–386

intrusion techniques, 379–381
password management

bloom filter, 404–406
hashed passwords, use of, 397–400
selection strategies, 403–404
user choices, 400–403
vulnerability of, 396–397

Intrusion Detection Exchange Protocol (IDXP), 394
Intrusion Detection Message Exchange Format (IDMEF), 393
Intrusion Detection System (IDES), 386

audit records, 383–384
base-rate fallacy, 388–389
distributed, 389–393
exchange format, 393–396
functional components, 394–395
rule-based, 386–388
statistical anomaly detection, 384–386

Intrusion management, 184
Intrusion techniques

access control, 379–381
one-way function, 379

IP address spoofing, 417. See also Packet filtering firewall
IPSec protocols, 425
Isolation, 35. See also Security design principles
ITU-T Recommendation X.800, 24, 25, 27, 29–32

Z05_STAL4855_06_GE_IDX.indd 455 8/11/16 12:22 PM

456   Index

approaches to, 79–84
code (MAC), 81–82, 93–95
digital signatures, 109–112
encryption, and, 80–81
hash functions, 82–91
introduction to, 79
key distribution, 137–139
one-way hash functions, 82–84
public-key cryptography, 96–109
secure hash functions, 84–91
technique, 95–96
TLS, 190, 192–194

Message authentication codes (MAC), 114, 193, 211
Message authentication key distribution, 137–139
Message Handling Service (MHS), 254
Messages, 26, 27, 30, 45–73, 79–84, 136, 277–278, 331–332.

See also Encryption; Public-key cryptography
attacks on, types of, 49
authentication, 78–112
byte ordering, 134
confidentiality, 45–73
modification of, 30
pretty good privacy (PGP), 279–280
release of contents, 25
Secure/Multipurpose Internet Mail Extension

(S/MIME), 268–279
SSH exchange, 214–215

Message User Agents (MUA), 254, 255
Metamorphic virus, 346
Misfeasor, intruders, 377
Mix columns, AES, 57
Mobile code, 352
Mobile device security, 226–230

cloud-based applications, 226
de-perimeterization, 227
elements, 229
external business requirements, 227
growing use of new devices, 226
strategy

barrier security, 230
device security, 228–229
traffic security, 230
VPNs, 230

threats
applications by unknown parties, 228
interaction with systems, 228
location services, 228
physical security controls, 227
untrusted mobile devices, 227
untrusted networks, 228

Mobility, 223
Model for network security, 39–42
Modification of messages, 27, 30
Modularity, 35
Morris worm, 350–351
Multipartite virus, 346
Multipurpose Internet Mail Extensions (MIME),

259–266
canonical form, 264
content types, 261–263
transfer encodings, 263–266

Mutation engine, 346

Key management. See Key distribution
Key pair recovery, PKI, 148
Key pair update, PKI, 148
Keystream, defined, 64

L
Layering, 35. See also Security design principles
Least astonishment, 36
Least common mechanism, 34
Least privilege, 34
Limitations, firewall, 413
Link encryption, 123
Local area networks (LANs), 411, 425
Logical link control (LLC) layer, IEEE 816, 233
Logic bomb, 356

M
MAC protocol data unit (MPDU), IEEE 816, 232–233, 235,

241–242
Macro viruses, 346–347
MAC service data unit (MSDU), IEEE 816, 232–234
Mail (DKIM), 289–295

e-mail threats, 290–291
functional flow, 292–295
Internet mail architecture, 254–258
strategy, 291–292

Mail Submission Agent (MSA), 255–256
Malicious association, 224
Malicious insiders, 177
Malicious software or malware

attack kits, 340
attack sources, 340–341
classification of, 339–340
terminology, 339
types, 338–341

Malware countermeasure approaches
detection, 361–362
generality, 361
global and local coverage, 361
identification, 361
minimal denial-of-service costs, 361
removal, 361
resiliency, 361
timeliness, 361
transparency, 361

Man-in-the-middle attack, 107–108, 199, 224
Manipulating online polls/games, 357
Markov process, 386. See also Statistical anomaly detec-

tion
Masquerade, 27
Masquerader, intruders, 376
Master secret creation, 202
Master session key (MSK), IEEE 802.11i, 246
Measured service, 172
Media access control (MAC) layer, IEEE 816, 232–233
Media gateway, 162
Memory sticks, 227
Message authentication, 78–112

Z05_STAL4855_06_GE_IDX.indd 456 8/11/16 12:22 PM

Index  457

P
Packet exchange, SSH, 210–213
Packet filtering firewall, 414–418
Packets, IPsec, 312–314
Padding, 194, 315
Pairwise master key (PMK), IEEE 802.11i, 246–247
Pairwise transient key (PTK), IEEE 802.11i, 246–247
Passive attacks, security, 25–27
Password attacks, Kerberos, 135–136
Password cracking approaches, 400
Password management, Intruders

bloom filter, 404–406
hashed passwords, use of, 397–400
selection strategies, 403–404
user choices, 400–403
vulnerability of, 396–397

Payload(s), 338
attack agent

remote control facility, 357
uses of bots (see Bots, uses of)
Zombie, 356

classification-based worm containment, 365
information theft

credential theft, 358, 359
identity theft, 359
keylogger, 358
phishing and identity theft, 358–359
reconnaissance and espionage, 359
spyware, 358

stealthing
backdoor (trapdoor), 359
rootkit, 359–360

system corruption, 355–356
logic bomb, 356
ransomware, 355
real-world damage, 355–356
Stuxnet worm, 356

Peer entity authentication, 29
Peer-to-peer networks, 224
Permanent key, defined, 123
Personal firewall, 422–423
Personal network Bluetooth devices, 224
Phishing and identity theft

phishing attack, 358
spear-phishing attack, 358

Physical layer, IEEE 816, 231
Physical security controls, lack of, 227–228
Plaintext, 48–50, 97

chosen, attack, 49
defined, 48
known, attack, 48–49
public-key encryption, 96

Platform as a service (PaaS), 173
Policy server, 161
Polymorphic virus, 346
Port forwarding, SSH, 217–219
Pre-shared key (PSK), IEEE 802.11i, 246
Pretty good privacy (PGP), 279–280
Private cloud, 173

N
National Institute of Standards and Technology (NIST), 42,

52, 87, 108
Native audit records, 383
Network access control (NAC)

access requestor (AR), 161
supplicants, 161

context, 162
enforcement methods

DHCP management, 164
firewall, 164
IEEE 802.1X, 163
VLANs, 163

NAS
media gateway, 162
policy server, 161
RAS, 162

policy server, 161
Network access server (NAS), 162
Network activity, 413
Network attack surface, 36
Network injection, 225
Network security, 17–42, 119–155, 184–185, 222–250

applications, 138
authentication, 119–155
computer security, 18
defined, 18
HTTPS, 188, 207–208
information security, 18
International Telecommunication Union (ITU), 24
Internet Engineering Task Force (IETF), 42
internet security, 19
Internet standards, 42
introduction to, 17–42
mechanisms, 21–24, 32
model for, 39–42
open systems interconnection (OSI)

architecture, 24–25
Secure Shell (SSH), 208–219
Secure Sockets Layer (SSL), 190–191
services, 25, 29–32
threats, 43, 177
transport-level, 187–219
violations of, 3 wireless, 222–250
X.800 standard recommendations, 24, 27–28, 31–32

Nonce, 95, 328, 332
Kerberos, 136

Nonrepudiation, 28, 30
Nontraditional networks, 224

O
Oakley Key Determination Protocol, 325
On-demand self-service, 172
One-way function, 379. See also Intrusion techniques

authentication, 82–84
hash functions, 82–84

Open design, 34
Open systems interconnection (OSI), 24–25
Options, Kerberos, 136

Z05_STAL4855_06_GE_IDX.indd 457 8/11/16 12:22 PM

458   Index

certification authority (CA), 147
CRL issuer, 148
end entity, 147
key pairs, 148
model, 146–149
PKIX management functions, 148
PKIX management protocols, 149
registration authority (RA), 147–148
repository, 148

Public keys, 97, 99, 140, 145
authority key identifier, 145
certificates, 138–139, 145
cryptography, 97, 99
defined, 99
distribution, 137–138
revoking, 146
secret keys, distribution of using, 138–139
subject key identifier, 145
usage, X.509 authentication service, 147

Q
Quick Response (QR) code, 228
Quoted-printable transfer encoding, 264

R
Ransomware, 355
Rapid elasticity, 172
Rate halting, 366
Rate limiting, 366
RC4 algorithm, 65–67

generation, 66
initialization of S, 65–66
logic, 66
strength of, 66–67

Reactive password checking strategy, 403
Realm, 124–137

concept of, 134
Kerberos version 4, 125–134
Kerberos version 5, 134–137

Real-world damage, 355–356
Reconnaissance and espionage, 359

credential theft, 359
identity theft, 359

Record Protocol, 191–194
Registration authority (RA), PKI, 147–148
Release of message contents, 25
Relying party (RP), 122
Remote access server (RAS), 162
Remote Authentication Dial-In User Service (RADIUS), 166
Remote execution capability, 368
Remote file access or transfer capability, 348
Remote login capability, 348
Replay, 27
Replay attacks, 126
Repository, PKI, 138
Request for Comment (RFC) standards, 25, 259, 290–291

RFC 4686, e-mail threats, 290–291
RFC 5322, S/MIME, 268–269
security recommendations, 24

Private keys, 145–146, 270–271, 279
pretty good privacy (PGP), 279–280
public-key cryptography and, 99–100
usage, X.509 authentication service, 145

Proactive password checker, 403–404
Propagating cipher block chaining (PCBC)

encryption, 135
Propagation

infected content
macro viruses, 346–347
nature of viruses, 342–345
scripting viruses, 346–347
viruses classification, 345–346

mobile code, 352
Morris worm, 350–351
remote execution capability, 348
remote file access or transfer capability, 348
remote login capability, 348
social engineering

spam (unsolicited bulk) e-mail, 353–354
Trojan horses, 354–355

state of worm technology, 351–352
target discovery, 348–349
vulnerability exploit

client-side vulnerabilities, 352–353
drive-by-downloads, 352
electronic mail or instant messenger facility, 348
file sharing, 348

worm propagation model, 349–350
Protected data transfer phase, IEEE 802.11i, 239, 248–249
Protocol

Diffie–Hellman, 104–105
key exchange, 104–105
PKIX management, 148–149

Pseudorandom function (PRF), 62, 203–204, 249–250
IEEE 802.11i, 249–250
IKEv2, 334–335
TLS, 203–204

Psychological acceptability, 34
Public cloud, 173
Public-key cryptography, 96–109

algorithms, 96–109
applications for, 99–100
ciphertext, 97
cryptography, 96–109
decryption algorithm, 97
Diffie–Hellman key exchange, 104–107
Digital Signature Standard (DSS), 108
elliptic curve (ECC), 109
encryption algorithm, 105–107
encryption structure, 97–99
plaintext, 97
private keys, 97, 99
public keys, 97, 99
requirements for, 100
RSA public-key encryption, 101–104
secret keys, 99

Public-key encryption, 96–109
algorithm, 46
digital signatures, 108
structure, 96–109

Public-key infrastructure (PKI), 146–149

Z05_STAL4855_06_GE_IDX.indd 458 8/11/16 12:22 PM

Index  459

Security as a service (SecaaS), 182
Security assessments, 184
Security association database (SAD), 310–311
Security association (SA), IP, 309–310, 322–325
Security attacks, 25–27

active, 27
defined, 25
denial of service, 27
masquerade, 27
modification of messages, 27, 30
passive, 25–27
release of message contents, 25
replay, 27
traffic analysis, 26

Security design principles, 32–36
Security information and event management

(SIEM), 184
Security mechanisms, 23–24, 31–32

services and, relationship of, 32
X.800 recommendations, 31

Security policy, 395
Security policy database (SPD), 311–312
Security policy violation, 39
Security services

access control, 29
authentication, 29
availability, 30
data confidentiality, 29
data integrity, 28, 30
defined, 25, 30
nonrepudiation, 30

Sender policy framework (SPF), 267, 286–289
mechanism modifiers, 288
operation, 289
on receiver side, 288–289
on sender side, 288

Separation of privilege, 34
Sequence number, 137
Service models, 173
Service request, SSH, 213
Service set identifier (SSID) broadcasting, 225
Service threats, defined, 41
Session keys, 60, 123, 135

defined, 60, 123
Kerberos, 135

Shared technology issues, 177–178
Shift rows, AES, 56
Signal-hiding techniques, 225
Signature detection, 382. See Rule-based detection
SignedData, S/MIME, 276–277
Simple Mail Transfer Protocol (SMTP), 415–416, 418
Single bastion inline, 424, 428
Single bastion T, 428
Small office/home office (SOHO) applications., 428
Smartphones, 227
SMTP, 415–416, 418
SOCKS, components, 420
Software as a service (SaaS), 173
Software attack surface, 36
Source routing attacks, 417
SSL/TLS attacks, 205–207
Stanford Research Institute (SRI), 386

Resource pooling, 172–173
Resources, 223
Response, IDES, 395
Reverse certificate, 143
Revocation, 144, 148

certificates, X.509 authentication service, 143
request, PKI, 148

Rivest-Shamir-Adleman (RSA) algorithm, 199–202
Rootkit

countermeasures, 364
external mode, 360
kernel mode, 360
memory based, 360
persistent, 360
user mode, 360
virtual machine based, 360

Round
Add Round Key, 57
AES encryption, 59
function, Feistel cipher, 50–52

Routing, IPsec, 306
RSA, 101–104

public-key encryption, 101–104
RSA probabilistic signature scheme (RSA-PSS), 111
Rule-based anomaly detection, 386
Rule-based detection, 382
Rule-based intrusion detection, 386–388
Rule-based penetration identification, 387–388

S
Salt value, 397. See also Hashed passwords
Screening router, 428
Scripting viruses, 346–347
Second-generation scanner, 362
Secret keys, 46, 99, 138–139

encryption using, 46
key management, 138–139
public-key cryptography, 99, 138–139
public-key distribution of, 138–139

Secure Hash Algorithm (SHA), 87
Secure hash functions. See Hash functions
Secure/Multipurpose Internet Mail Extension

(S/MIME), 268–279
certificate processing, 278–279
clear signing, 277
cryptographic algorithms, 273–274
messages, 274–278
Multipurpose Internet Mail Extensions (MIME),

259–266
Secure Shell (SSH), 208–219

channels, 216
Connection Protocol, 209
host keys, 209–210
key exchange and generation, 213–214
message exchange, 214–215
packet exchange, 210–213
port forwarding, 217–219
Transport Layer Protocol, 209–213
User Authentication Protocol, 209, 214

Secure Sockets Layer (SSL), 190
Securing wireless transmissions, 225–226

Z05_STAL4855_06_GE_IDX.indd 459 8/11/16 12:22 PM

460   Index

Threshold random walk (TRW) scan detection, 366
Ticket-granting server (TGS), 126
Ticket-granting service exchange, 136–137
Ticket lifetime, 134–135
Time series model, 386
Times, Kerberos, 136
Timestamp authentication, 127, 137
Tiny fragment attacks, 417–418
Traffic analysis, 26
Traffic flow confidentiality (TFC), 316
Traffic processing, IP, 312–314
Traffic security, 230
Transport Layer Protocol, SSH, 209–213
Transport Layer Security (TLS), 65, 91, 165, 190–207

alert protocol, 191
cipher spec, 194–197
cryptographic computations, 202–204
handshake protocol, 197–202
message authentication code (MAC), 211–212
padding, 194
pseudorandom function (PRF), 203–204
record protocol, 192–194

Transport-level security, 187–219
HTTPS, 188, 207–208
Secure Shell (SSH), 188, 207–208
Socket Layer (SSL), 190
Transport Layer Security (TLS), 190–207
Web considerations, 188–190

Transport mode, IP, 308–309, 317–320
Triple Data Encryption Standard (3DES), 54–55
Trojan horses, 354–355
Tunnel mode, IP, 308–309, 320–321

U
UNIX implementations, 399–400
Unknown risk profile, 178
User credential compromise, 39
User credential guessing, 39
User identity, 413
User terminal and user (UT/U), 38

V
Virtual local area networks (VLANs), 163
Virtual private network (VPN), 230, 425–426
Viruses

concealment strategy
encrypted virus, 346
metamorphic virus, 346
mutation engine, 346
polymorphic virus, 346
stealth virus, 346

nature of
dormant phase, 343
execution phase, 343
infection mechanism, 343
payload, 343
propagation phase, 343
triggering phase, 343
trigger, logic bomb, 343

State array, AES, 56
Stateful inspection firewalls, 418–419
Statistical anomaly detection, 382

profile-based, 384
counter, 385
gauge, 385
interval timer, 385
mean and standard deviation, 385–386
resource utilization, 385

threshold analysis, 384
Stealth virus, 346
Stream ciphers, 63–67

defined, 48
design considerations, 64
keystream, 64
plaintext processing, cryptography, 48
RC4 algorithm, 65–67
structure of, 63–65

Stuxnet worm, 355, 359
Subject field, 144, 147
Subkey, Kerberos, 137
Substitution bytes, AES, 56
Symmetric encryption, 46–52

block cipher, design of, 50
block size, 50
ciphertext, 47
computationally secure, 49
cryptanalysis, 48–50
cryptography, 48
decryption algorithm, 47
encryption algorithm, 46
Feistel cipher structure, 50–52
key size, 51
plaintext, 46, 48–49
principles of, 46–52
requirements of, 47
round function, 50
rounds, number of, 50
secret key, 46
subkey generation algorithm, 52

T
Tablets, 227
Target discovery

hit list, 371
random, 371
scanning or fingerprinting, 371
topological, 371

Third-generation scanner, 362
Threats. See also Attack(s)

active attacks, 27
denial-of-service (DoS) attack, 30
masquerade, 27
modification of information, 27
network security, 124
passive attack, 25–27
release of contents, 25
replay, 27
service, 41
traffic analysis, 26

Z05_STAL4855_06_GE_IDX.indd 460 8/11/16 12:22 PM

Index  461

man-in-the middle attacks, 224
network injection, 225
nontraditional networks, 224

Wireless security, 223–226
accessibility, 223
access points, 225
channel, 223
measures, 225
mobility, 223
networks, 224–226
resources, 223
threats, network, 224–225
transmissions, 224–225

encryption, 225
signal-hiding techniques, 225

Workstation hijacking, 397
Worm propagation model, 349–350
Worm technology, state of

metamorphic, 351
multiexploit, 351
multiplatform, 351
polymorphic, 351
transport vehicles, 351
zero-day exploit, 351

X
X.509 certificate, 139–146

certificate revocation list (CRL), 144
certificates, 140–142
certification authority (CA), 147
forward certificate, 143
introduction to, 139
issuer attributes, 146
key information, 145–146
path constraints, 146
policy information, 145–146
reverse certificate, 143
revocation of certificates, 144
subject attributes, 145
user’s certificate, obtaining, 142–144
version 3, 144–145

X.800 standard recommendations, 24, 25, 27, 29–32

structure
compression virus, 344, 345
simple virus, 344
traditional machine-executable virus code, 343

target, classification by
boot sector infector, 346
file infector, 346
macro virus, 346
multipartite virus, 346

Vulnerability, passwords
electronic monitoring, 397
exploiting

multiple password use, 397
user mistakes, 397

offline dictionary attack, 396
password guessing against single user, 397
popular password attack, 396–397
specific account attack, 396
workstation hijacking, 397

W
Web security, 184–185, 188–190. See also Internet

security
Web sites, 188, 189
Wide area network (WAN), 411, 423
Wi-Fi hotspots, 224
Wi-Fi Protected Access (WPA), 231, 237
Wireless Ethernet Compatibility Alliance (WECA), 231
Wireless networking components, 224
Wireless network security, 222–250

IEEE 802.11i LAN, 236–250
IEEE 802.11 LAN, 230–236
Robust Security Network (RSN), 237
Wi-Fi Protected Access (WPA), 237
Wired Equivalent Privacy (WEP), 237
wireless security, 223–226

Wireless network threats, 224–225
accidental association, 224
ad hoc networks, 224
denial of service (DoS), 225
identity theft (MAC spoofing), 224
malicious association, 224

Z05_STAL4855_06_GE_IDX.indd 461 8/11/16 12:22 PM

The William Stallings Books On Computer

Data And Computer Communications, Tenth Edition
A comprehensive survey that has become the standard in the field, cover-
ing (1) data communications, including transmission, media, signal encoding,
link control, and multiplexing; (2) communication networks, including wired
and wireless WANs and LANs; (3) the TCP/IP protocol suite, including IPv6,
TCP, MIME, and HTTP, as well as a detailed treatment of network security.
Received the 2007 Text and Academic Authors Association (TAA) award for
the best Computer Science and Engineering Textbook of the year.

Wireless Communication Networks And Systems
(with Cory Beard)

A comprehensive, state-of-the art survey. Covers fundamental wireless com-
munications topics, including antennas and propagation, signal encoding tech-
niques, spread spectrum, and error correction techniques. Examines satellite,
cellular, wireless local loop networks and wireless LANs, including Bluetooth
and 802.11. Covers wireless mobile networks and applications.

Computer Security, Third Edition
(with Lawrie Brown)

A comprehensive treatment of computer security technology, including al-
gorithms, protocols, and applications. Covers cryptography, authentication,
access control, database security, cloud security, intrusion detection and
prevention, malicious software, denial of service, firewalls, software security,
physical security, human factors, auditing, legal and ethical aspects, and trusted
systems. Received the 2008 TAA award for the best Computer Science and
Engineering Textbook of the year.

Operating Systems, Eighth Edition
A state-of-the art survey of operating system principles. Covers fundamen-
tal technology as well as contemporary design issues, such as threads, SMPs,
multicore, real-time systems, multiprocessor scheduling, embedded OSs, dis-
tributed systems, clusters, security, and object-oriented design. Third, fourth
and sixth editions received the TAA award for the best Computer Science and
Engineering Textbook of the year.

Z05_STAL4855_06_GE_IDX.indd 462 8/11/16 12:22 PM

And Data Communications Technology

Foundations Of Modern Networking:
SDN, NFV, QoE, IoT, and Cloud

An in-depth up-to-date survey and tutorial on Software Defined Networking,
Network Functions Virtualization, Quality of Experience, Internet of Things,
and Cloud Computing and Networking. Examines standards, technologies,
and deployment issues. Also treats security and career topics.

Cryptography And Network Security, SEVENTH Edition
A tutorial and survey on network security technology. Each of the basic
building blocks of network security, including conventional and public-key
cryptography, authentication, and digital signatures, are covered. Provides a
thorough mathematical background for such algorithms as AES and RSA.
The book covers important network security tools and applications, including
S/MIME, IP Security, Kerberos, SSL/TLS, network access control, and Wi-Fi
security. In addition, methods for countering hackers and viruses are explored.
Second edition received the TAA award for the best Computer Science and
Engineering Textbook of 1999.

Business Data Communications, Seventh Edition
(with Tom Case)

A comprehensive presentation of data communications and telecommunica-
tions from a business perspective. Covers voice, data, image, and video com-
munications and applications technology and includes a number of case stud-
ies. Topics covered include data communications, TCP/IP, cloud computing,
Internet protocols and applications, LANs and WANs, network security, and
network management.

Computer Organization And Architecture,
Tenth Edition

A unified view of this broad field. Covers fundamentals such as CPU, con-
trol unit, microprogramming, instruction set, I/O, and memory. Also covers
advanced topics such as multicore, superscalar, and parallel organization.
Five-time winner of the TAA award for the best Computer Science and
Engineering Textbook of the year.

Z05_STAL4855_06_GE_IDX.indd 463 8/11/16 12:22 PM

	Cover

	Contents

	Preface

	About the Author

	Chapter 1 Introduction�����������������������������
	1.1 Computer Security Concepts�������������������������������������
	1.2 The OSI Security Architecture��
	1.3 Security Attacks���������������������������
	1.4 Security Services����������������������������
	1.5 Security Mechanisms������������������������������
	1.6 Fundamental Security Design Principles���
	1.7 Attack Surfaces and Attack Trees���
	1.8 A Model for Network Security���������������������������������������
	1.9 Standards��������������������
	1.10 Key Terms, Review Questions, and Problems���

	PART ONE: CRYPTOGRAPHY�����������������������������
	Chapter 2 Symmetric Encryption and Message Confidentiality���
	2.1 Symmetric Encryption Principles��
	2.2 Symmetric Block Encryption Algorithms��
	2.3 Random and Pseudorandom Numbers��
	2.4 Stream Ciphers and RC4���������������������������������
	2.5 Cipher Block Modes of Operation��
	2.6 Key Terms, Review Questions, and Problems��

	Chapter 3 Public-Key Cryptography and Message Authentication���
	3.1 Approaches to Message Authentication���
	3.2 Secure Hash Functions��������������������������������
	3.3 Message Authentication Codes���������������������������������������
	3.4 Public-Key Cryptography Principles���
	3.5 Public-Key Cryptography Algorithms���
	3.6 Digital Signatures�����������������������������
	3.7 Key Terms, Review Questions, and Problems��

	PART TWO: NETWORK SECURITY APPLICATIONS��
	Chapter 4 Key Distribution and User Authentication���
	4.1 Remote User Authentication Principles��
	4.2 Symmetric Key Distribution Using Symmetric Encryption��
	4.3 Kerberos�������������������
	4.4 Key Distribution Using Asymmetric Encryption���
	4.5 X.509 Certificates�����������������������������
	4.6 Public-Key Infrastructure������������������������������������
	4.7 Federated Identity Management��
	4.8 Key Terms, Review Questions, and Problems��

	Chapter 5 Network Access Control and Cloud Security��
	5.1 Network Access Control���������������������������������
	5.2 Extensible Authentication Protocol���
	5.3 IEEE 802.1X Port-Based Network Access Control��
	5.4 Cloud Computing��������������������������
	5.5 Cloud Security Risks and Countermeasures���
	5.6 Data Protection in the Cloud���������������������������������������
	5.7 Cloud Security as a Service��������������������������������������
	5.8 Addressing Cloud Computing Security Concerns���
	5.9 Key Terms, Review Questions, and Problems��

	Chapter 6 Transport-Level Security���
	6.1 Web Security Considerations��������������������������������������
	6.2 Transport Layer Security�����������������������������������
	6.3 HTTPS����������������
	6.4 Secure Shell (SSH)�����������������������������
	6.5 Key Terms, Review Questions, and Problems��

	Chapter 7 Wireless Network Security��
	7.1 Wireless Security����������������������������
	7.2 Mobile Device Security���������������������������������
	7.3 IEEE 802.11 Wireless LAN Overview��
	7.4 IEEE 802.11i Wireless LAN Security���
	7.5 Key Terms, Review Questions, and Problems��

	Chapter 8 Electronic Mail Security���
	8.1 Internet Mail Architecture�������������������������������������
	8.2 E-mail Formats�������������������������
	8.3 E-mail Threats and Comprehensive E-mail Security���
	8.4 S/MIME�����������������
	8.5 Pretty Good Privacy������������������������������
	8.6 DNSSEC�����������������
	8.7 DNS-Based Authentication of Named Entities���
	8.8 Sender Policy Framework����������������������������������
	8.9 DomainKeys Identified Mail�������������������������������������
	8.10 Domain-Based Message Authentication, Reporting, and Conformance���
	8.11 Key Terms, Review Questions, and Problems���

	Chapter 9 IP Security����������������������������
	9.1 IP Security Overview�������������������������������
	9.2 IP Security Policy�����������������������������
	9.3 Encapsulating Security Payload���
	9.4 Combining Security Associations��
	9.5 Internet Key Exchange��������������������������������
	9.6 Cryptographic Suites�������������������������������
	9.7 Key Terms, Review Questions, and Problems��

	PART THREE: SYSTEM SECURITY����������������������������������
	Chapter 10 Malicious Software������������������������������������
	10.1 Types of Malicious Software (Malware)���
	10.2 Advanced Persistent Threat��������������������������������������
	10.3 Propagation—Infected Content—Viruses��
	10.4 Propagation—Vulnerability Exploit—Worms���
	10.5 Propagation—Social Engineering—Spam E-mail, Trojans���
	10.6 Payload—System Corruption
	10.7 Payload—Attack Agent—Zombie, Bots���
	10.8 Payload—Information Theft—Keyloggers, Phishing, Spyware���
	10.9 Payload—Stealthing—Backdoors, Rootkits��
	10.10 Countermeasures����������������������������
	10.11 Distributed Denial of Service Attacks��
	10.12 Key Terms, Review Questions, and Problems��

	Chapter 11 Intruders���������������������������
	11.1 Intruders���������������������
	11.2 Intrusion Detection�������������������������������
	11.3 Password Management�������������������������������
	11.4 Key Terms, Review Questions, and Problems���

	Chapter 12 Firewalls���������������������������
	12.1 The Need for Firewalls����������������������������������
	12.2 Firewall Characteristics and Access Policy��
	12.3 Types of Firewalls������������������������������
	12.4 Firewall Basing���������������������������
	12.5 Firewall Location and Configurations��
	12.6 Key Terms, Review Questions, and Problems���

	APPENDICES�����������������
	Appendix A Some Aspects of Number Theory���
	A.1 Prime and Relatively Prime Numbers���
	A.2 Modular Arithmetic�����������������������������

	Appendix B Projects for Teaching Network Security��
	B.1 Research Projects����������������������������
	B.2 Hacking Project��������������������������
	B.3 Programming Projects�������������������������������
	B.4 Laboratory Exercises�������������������������������
	B.5 Practical Security Assessments���
	B.6 Firewall Projects����������������������������
	B.7 Case Studies�����������������������
	B.8 Writing Assignments������������������������������
	B.9 Reading/Report Assignments�������������������������������������

	References�����������������
	Credits��������������
	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

